Optimal. Leaf size=27 \[ \log \left (3-e^5-x-4 x^2-4 \left (e^{4-x}+x\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.08, antiderivative size = 25, normalized size of antiderivative = 0.93, number of steps used = 1, number of rules used = 1, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.026, Rules used = {6684} \begin {gather*} \log \left (-4 x^2-5 x-4 e^{4-x}-e^5+3\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\log \left (3-e^5-4 e^{4-x}-5 x-4 x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.78, size = 30, normalized size = 1.11 \begin {gather*} -x+\log \left (4 e^4+e^{5+x}+e^x \left (-3+5 x+4 x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 21, normalized size = 0.78 \begin {gather*} \log \left (4 \, x^{2} + 5 \, x + e^{5} + 4 \, e^{\left (-x + 4\right )} - 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 21, normalized size = 0.78 \begin {gather*} \log \left (4 \, x^{2} + 5 \, x + e^{5} + 4 \, e^{\left (-x + 4\right )} - 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 22, normalized size = 0.81
method | result | size |
derivativedivides | \(\ln \left (4 \,{\mathrm e}^{-x +4}+{\mathrm e}^{5}+4 x^{2}+5 x -3\right )\) | \(22\) |
default | \(\ln \left (4 \,{\mathrm e}^{-x +4}+{\mathrm e}^{5}+4 x^{2}+5 x -3\right )\) | \(22\) |
norman | \(\ln \left (4 \,{\mathrm e}^{-x +4}+{\mathrm e}^{5}+4 x^{2}+5 x -3\right )\) | \(22\) |
risch | \(-4+\ln \left (x^{2}+\frac {{\mathrm e}^{5}}{4}+\frac {5 x}{4}+{\mathrm e}^{-x +4}-\frac {3}{4}\right )\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 21, normalized size = 0.78 \begin {gather*} \log \left (4 \, x^{2} + 5 \, x + e^{5} + 4 \, e^{\left (-x + 4\right )} - 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.14, size = 19, normalized size = 0.70 \begin {gather*} \ln \left (\frac {5\,x}{4}+\frac {{\mathrm {e}}^5}{4}+{\mathrm {e}}^{4-x}+x^2-\frac {3}{4}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 22, normalized size = 0.81 \begin {gather*} \log {\left (x^{2} + \frac {5 x}{4} + e^{4 - x} - \frac {3}{4} + \frac {e^{5}}{4} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________