Optimal. Leaf size=38 \[ \frac {1-\frac {1}{25} e^{\frac {2}{3} \left (-2+2 (-4+x)-x^2\right )} (1-x)^2 x^2}{x} \]
________________________________________________________________________________________
Rubi [B] time = 1.75, antiderivative size = 77, normalized size of antiderivative = 2.03, number of steps used = 43, number of rules used = 6, integrand size = 65, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.092, Rules used = {1593, 6742, 2234, 2205, 2240, 2241} \begin {gather*} \frac {2}{25} e^{-\frac {2 x^2}{3}+\frac {4 x}{3}-\frac {20}{3}} x^2-\frac {1}{25} e^{-\frac {2 x^2}{3}+\frac {4 x}{3}-\frac {20}{3}} x-\frac {1}{25} e^{-\frac {2 x^2}{3}+\frac {4 x}{3}-\frac {20}{3}} x^3+\frac {1}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 2205
Rule 2234
Rule 2240
Rule 2241
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3-3 x+\exp \left (\frac {2}{3} \left (-10+2 x-x^2+3 \log \left (\frac {1}{5} \left (x-x^2\right )\right )\right )\right ) \left (3-5 x-8 x^2+4 x^3\right )}{x^2 (-3+3 x)} \, dx\\ &=\int \left (-\frac {1}{x^2}+\frac {1}{75} e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} (-1+x) \left (3-5 x-8 x^2+4 x^3\right )\right ) \, dx\\ &=\frac {1}{x}+\frac {1}{75} \int e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} (-1+x) \left (3-5 x-8 x^2+4 x^3\right ) \, dx\\ &=\frac {1}{x}+\frac {1}{75} \int \left (-3 e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}}+8 e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} x+3 e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} x^2-12 e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} x^3+4 e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} x^4\right ) \, dx\\ &=\frac {1}{x}-\frac {1}{25} \int e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} \, dx+\frac {1}{25} \int e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} x^2 \, dx+\frac {4}{75} \int e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} x^4 \, dx+\frac {8}{75} \int e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} x \, dx-\frac {4}{25} \int e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} x^3 \, dx\\ &=-\frac {2}{25} e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}}+\frac {1}{x}-\frac {3}{100} e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} x+\frac {3}{25} e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} x^2-\frac {1}{25} e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} x^3+\frac {3}{100} \int e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} \, dx+\frac {1}{25} \int e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} x \, dx+\frac {4}{75} \int e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} x^3 \, dx+\frac {8}{75} \int e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} \, dx+\frac {3}{25} \int e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} x^2 \, dx-\frac {4}{25} \int e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} x^2 \, dx-\frac {6}{25} \int e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} x \, dx-\frac {\int e^{-\frac {3}{8} \left (\frac {4}{3}-\frac {4 x}{3}\right )^2} \, dx}{25 e^6}\\ &=\frac {7}{100} e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}}+\frac {1}{x}+\frac {2}{25} e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} x^2-\frac {1}{25} e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} x^3+\frac {\sqrt {\frac {3 \pi }{2}} \text {erf}\left (\sqrt {\frac {2}{3}} (1-x)\right )}{50 e^6}+\frac {1}{25} \int e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} \, dx+\frac {4}{75} \int e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} x^2 \, dx+\frac {2}{25} \int e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} x \, dx+\frac {9}{100} \int e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} \, dx-\frac {3}{25} \int e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} \, dx+\frac {3}{25} \int e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} x \, dx-\frac {4}{25} \int e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} x \, dx-\frac {6}{25} \int e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} \, dx+\frac {3 \int e^{-\frac {3}{8} \left (\frac {4}{3}-\frac {4 x}{3}\right )^2} \, dx}{100 e^6}+\frac {8 \int e^{-\frac {3}{8} \left (\frac {4}{3}-\frac {4 x}{3}\right )^2} \, dx}{75 e^6}\\ &=\frac {1}{25} e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}}+\frac {1}{x}-\frac {1}{25} e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} x+\frac {2}{25} e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} x^2-\frac {1}{25} e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} x^3-\frac {2 \sqrt {\frac {2 \pi }{3}} \text {erf}\left (\sqrt {\frac {2}{3}} (1-x)\right )}{25 e^6}+\frac {\sqrt {\frac {3 \pi }{2}} \text {erf}\left (\sqrt {\frac {2}{3}} (1-x)\right )}{200 e^6}+\frac {1}{25} \int e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} \, dx+\frac {4}{75} \int e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} x \, dx+\frac {2}{25} \int e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} \, dx+\frac {3}{25} \int e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} \, dx-\frac {4}{25} \int e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} \, dx+\frac {\int e^{-\frac {3}{8} \left (\frac {4}{3}-\frac {4 x}{3}\right )^2} \, dx}{25 e^6}+\frac {9 \int e^{-\frac {3}{8} \left (\frac {4}{3}-\frac {4 x}{3}\right )^2} \, dx}{100 e^6}-\frac {3 \int e^{-\frac {3}{8} \left (\frac {4}{3}-\frac {4 x}{3}\right )^2} \, dx}{25 e^6}-\frac {6 \int e^{-\frac {3}{8} \left (\frac {4}{3}-\frac {4 x}{3}\right )^2} \, dx}{25 e^6}\\ &=\frac {1}{x}-\frac {1}{25} e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} x+\frac {2}{25} e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} x^2-\frac {1}{25} e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} x^3-\frac {2 \sqrt {\frac {2 \pi }{3}} \text {erf}\left (\sqrt {\frac {2}{3}} (1-x)\right )}{25 e^6}+\frac {3 \sqrt {\frac {3 \pi }{2}} \text {erf}\left (\sqrt {\frac {2}{3}} (1-x)\right )}{25 e^6}+\frac {4}{75} \int e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} \, dx+\frac {\int e^{-\frac {3}{8} \left (\frac {4}{3}-\frac {4 x}{3}\right )^2} \, dx}{25 e^6}+\frac {2 \int e^{-\frac {3}{8} \left (\frac {4}{3}-\frac {4 x}{3}\right )^2} \, dx}{25 e^6}+\frac {3 \int e^{-\frac {3}{8} \left (\frac {4}{3}-\frac {4 x}{3}\right )^2} \, dx}{25 e^6}-\frac {4 \int e^{-\frac {3}{8} \left (\frac {4}{3}-\frac {4 x}{3}\right )^2} \, dx}{25 e^6}\\ &=\frac {1}{x}-\frac {1}{25} e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} x+\frac {2}{25} e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} x^2-\frac {1}{25} e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} x^3-\frac {2 \sqrt {\frac {2 \pi }{3}} \text {erf}\left (\sqrt {\frac {2}{3}} (1-x)\right )}{25 e^6}+\frac {\sqrt {6 \pi } \text {erf}\left (\sqrt {\frac {2}{3}} (1-x)\right )}{25 e^6}+\frac {4 \int e^{-\frac {3}{8} \left (\frac {4}{3}-\frac {4 x}{3}\right )^2} \, dx}{75 e^6}\\ &=\frac {1}{x}-\frac {1}{25} e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} x+\frac {2}{25} e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} x^2-\frac {1}{25} e^{-\frac {20}{3}+\frac {4 x}{3}-\frac {2 x^2}{3}} x^3\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.31, size = 49, normalized size = 1.29 \begin {gather*} \frac {e^{-\frac {2}{3} \left (10+x^2\right )} \left (75 e^{\frac {2}{3} \left (10+x^2\right )}-3 e^{4 x/3} (-1+x)^2 x^2\right )}{75 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 30, normalized size = 0.79 \begin {gather*} -\frac {e^{\left (-\frac {2}{3} \, x^{2} + \frac {4}{3} \, x + 2 \, \log \left (-\frac {1}{5} \, x^{2} + \frac {1}{5} \, x\right ) - \frac {20}{3}\right )} - 1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.38, size = 53, normalized size = 1.39 \begin {gather*} -\frac {x^{4} e^{\left (-\frac {2}{3} \, x^{2} + \frac {4}{3} \, x - \frac {20}{3}\right )} - 2 \, x^{3} e^{\left (-\frac {2}{3} \, x^{2} + \frac {4}{3} \, x - \frac {20}{3}\right )} + x^{2} e^{\left (-\frac {2}{3} \, x^{2} + \frac {4}{3} \, x - \frac {20}{3}\right )} - 25}{25 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.39, size = 32, normalized size = 0.84
method | result | size |
norman | \(\frac {1-\left (-\frac {1}{5} x^{2}+\frac {1}{5} x \right )^{2} {\mathrm e}^{-\frac {20}{3}-\frac {2}{3} x^{2}+\frac {4}{3} x}}{x}\) | \(32\) |
default | \(-\frac {x \,{\mathrm e}^{-\frac {20}{3}-\frac {2}{3} x^{2}+\frac {4}{3} x}}{25}+\frac {2 x^{2} {\mathrm e}^{-\frac {20}{3}-\frac {2}{3} x^{2}+\frac {4}{3} x}}{25}-\frac {x^{3} {\mathrm e}^{-\frac {20}{3}-\frac {2}{3} x^{2}+\frac {4}{3} x}}{25}+\frac {1}{x}\) | \(51\) |
risch | \(\frac {1}{x}+\frac {25 \left (-\frac {1}{25} x +\frac {2}{25} x^{2}-\frac {1}{25} x^{3}\right ) \left (-\frac {1}{5} x^{2}+\frac {1}{5} x \right )^{2} {\mathrm e}^{-\frac {20}{3}-\frac {2}{3} x^{2}+\frac {4}{3} x}}{x^{2} \left (x -1\right )^{2}}\) | \(51\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.75, size = 35, normalized size = 0.92 \begin {gather*} -\frac {1}{25} \, {\left (x^{3} e^{\frac {1}{3}} - 2 \, x^{2} e^{\frac {1}{3}} + x e^{\frac {1}{3}}\right )} e^{\left (-\frac {2}{3} \, x^{2} + \frac {4}{3} \, x - 7\right )} + \frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.36, size = 50, normalized size = 1.32 \begin {gather*} \frac {2\,x^2\,{\mathrm {e}}^{-\frac {2\,x^2}{3}+\frac {4\,x}{3}-\frac {20}{3}}}{25}-\frac {x^3\,{\mathrm {e}}^{-\frac {2\,x^2}{3}+\frac {4\,x}{3}-\frac {20}{3}}}{25}-\frac {x\,{\mathrm {e}}^{-\frac {2\,x^2}{3}+\frac {4\,x}{3}-\frac {20}{3}}}{25}+\frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 31, normalized size = 0.82 \begin {gather*} \frac {\left (- x^{3} + 2 x^{2} - x\right ) e^{- \frac {2 x^{2}}{3} + \frac {4 x}{3} - \frac {20}{3}}}{25} + \frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________