Optimal. Leaf size=32 \[ \log \left (\frac {1}{2} e^{\frac {4}{x}+10 x} \log ^2\left (1+e^{-4+x}\right )-\log (\log (4))\right ) \]
________________________________________________________________________________________
Rubi [F] time = 180.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \text {\$Aborted} \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
Aborted
________________________________________________________________________________________
Mathematica [F] time = 3.08, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 e^{-4+x+\frac {2 \left (2+5 x^2\right )}{x}} x^2 \log \left (1+e^{-4+x}\right )+e^{\frac {2 \left (2+5 x^2\right )}{x}} \left (-4+10 x^2+e^{-4+x} \left (-4+10 x^2\right )\right ) \log ^2\left (1+e^{-4+x}\right )}{e^{\frac {2 \left (2+5 x^2\right )}{x}} \left (x^2+e^{-4+x} x^2\right ) \log ^2\left (1+e^{-4+x}\right )+\left (-2 x^2-2 e^{-4+x} x^2\right ) \log (\log (4))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.64, size = 96, normalized size = 3.00 \begin {gather*} \frac {10 \, x^{2} + x \log \left ({\left (e^{\left (\frac {2 \, {\left (5 \, x^{2} + 2\right )}}{x}\right )} \log \left ({\left (e^{\left (\frac {11 \, x^{2} - 4 \, x + 4}{x}\right )} + e^{\left (\frac {2 \, {\left (5 \, x^{2} + 2\right )}}{x}\right )}\right )} e^{\left (-\frac {2 \, {\left (5 \, x^{2} + 2\right )}}{x}\right )}\right )^{2} - 2 \, \log \left (2 \, \log \relax (2)\right )\right )} e^{\left (-\frac {2 \, {\left (5 \, x^{2} + 2\right )}}{x}\right )}\right ) + 4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.38, size = 70, normalized size = 2.19 \begin {gather*} \log \left (-e^{\left (\frac {2 \, {\left (5 \, x^{2} + 2\right )}}{x}\right )} \log \left (e^{4} + e^{x}\right )^{2} + 8 \, e^{\left (\frac {2 \, {\left (5 \, x^{2} + 2\right )}}{x}\right )} \log \left (e^{4} + e^{x}\right ) - 16 \, e^{\left (\frac {2 \, {\left (5 \, x^{2} + 2\right )}}{x}\right )} + 2 \, \log \relax (2) + 2 \, \log \left (\log \relax (2)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 46, normalized size = 1.44
method | result | size |
risch | \(\frac {10 x^{2}+4}{x}+\ln \left (\ln \left ({\mathrm e}^{x -4}+1\right )^{2}-2 \left (\ln \relax (2)+\ln \left (\ln \relax (2)\right )\right ) {\mathrm e}^{-\frac {2 \left (5 x^{2}+2\right )}{x}}\right )\) | \(46\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.70, size = 84, normalized size = 2.62 \begin {gather*} \frac {2 \, {\left (5 \, x^{2} + 2\right )}}{x} + \log \left ({\left (e^{\left (10 \, x + \frac {4}{x}\right )} \log \left (e^{4} + e^{x}\right )^{2} - 8 \, e^{\left (10 \, x + \frac {4}{x}\right )} \log \left (e^{4} + e^{x}\right ) + 16 \, e^{\left (10 \, x + \frac {4}{x}\right )} - 2 \, \log \relax (2) - 2 \, \log \left (\log \relax (2)\right )\right )} e^{\left (-10 \, x - \frac {4}{x}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.53, size = 30, normalized size = 0.94 \begin {gather*} \ln \left ({\mathrm {e}}^{10\,x+\frac {4}{x}}\,{\ln \left ({\mathrm {e}}^{-4}\,{\mathrm {e}}^x+1\right )}^2+\ln \left (\frac {1}{4\,{\ln \relax (2)}^2}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.11, size = 41, normalized size = 1.28 \begin {gather*} 10 x + \log {\left (\log {\left (e^{x - 4} + 1 \right )}^{2} + \left (- 2 \log {\relax (2 )} - 2 \log {\left (\log {\relax (2 )} \right )}\right ) e^{- \frac {2 \left (5 x^{2} + 2\right )}{x}} \right )} + \frac {4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________