3.22.44 \(\int \frac {e^{\frac {-21+6 x+3 x^2-x^3}{4-4 x+x^2}} (30-18 x+6 x^2-x^3)}{-8+12 x-6 x^2+x^3} \, dx\)

Optimal. Leaf size=22 \[ 5+e^{\frac {(3-x) (-7+x)}{(-2+x)^2}-x} \]

________________________________________________________________________________________

Rubi [F]  time = 0.97, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {-21+6 x+3 x^2-x^3}{4-4 x+x^2}} \left (30-18 x+6 x^2-x^3\right )}{-8+12 x-6 x^2+x^3} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[(E^((-21 + 6*x + 3*x^2 - x^3)/(4 - 4*x + x^2))*(30 - 18*x + 6*x^2 - x^3))/(-8 + 12*x - 6*x^2 + x^3),x]

[Out]

-Defer[Int][E^((-21 + 6*x + 3*x^2 - x^3)/(-2 + x)^2), x] + 10*Defer[Int][E^((-21 + 6*x + 3*x^2 - x^3)/(-2 + x)
^2)/(-2 + x)^3, x] - 6*Defer[Int][E^((-21 + 6*x + 3*x^2 - x^3)/(-2 + x)^2)/(-2 + x)^2, x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {-21+6 x+3 x^2-x^3}{(-2+x)^2}} \left (-30+18 x-6 x^2+x^3\right )}{(2-x)^3} \, dx\\ &=\int \left (-e^{\frac {-21+6 x+3 x^2-x^3}{(-2+x)^2}}+\frac {10 e^{\frac {-21+6 x+3 x^2-x^3}{(-2+x)^2}}}{(-2+x)^3}-\frac {6 e^{\frac {-21+6 x+3 x^2-x^3}{(-2+x)^2}}}{(-2+x)^2}\right ) \, dx\\ &=-\left (6 \int \frac {e^{\frac {-21+6 x+3 x^2-x^3}{(-2+x)^2}}}{(-2+x)^2} \, dx\right )+10 \int \frac {e^{\frac {-21+6 x+3 x^2-x^3}{(-2+x)^2}}}{(-2+x)^3} \, dx-\int e^{\frac {-21+6 x+3 x^2-x^3}{(-2+x)^2}} \, dx\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.18, size = 21, normalized size = 0.95 \begin {gather*} e^{-1-\frac {5}{(-2+x)^2}+\frac {6}{-2+x}-x} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(E^((-21 + 6*x + 3*x^2 - x^3)/(4 - 4*x + x^2))*(30 - 18*x + 6*x^2 - x^3))/(-8 + 12*x - 6*x^2 + x^3),
x]

[Out]

E^(-1 - 5/(-2 + x)^2 + 6/(-2 + x) - x)

________________________________________________________________________________________

fricas [A]  time = 0.68, size = 26, normalized size = 1.18 \begin {gather*} e^{\left (-\frac {x^{3} - 3 \, x^{2} - 6 \, x + 21}{x^{2} - 4 \, x + 4}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^3+6*x^2-18*x+30)*exp((-x^3+3*x^2+6*x-21)/(x^2-4*x+4))/(x^3-6*x^2+12*x-8),x, algorithm="fricas")

[Out]

e^(-(x^3 - 3*x^2 - 6*x + 21)/(x^2 - 4*x + 4))

________________________________________________________________________________________

giac [B]  time = 0.17, size = 57, normalized size = 2.59 \begin {gather*} e^{\left (-\frac {x^{3}}{x^{2} - 4 \, x + 4} + \frac {3 \, x^{2}}{x^{2} - 4 \, x + 4} + \frac {6 \, x}{x^{2} - 4 \, x + 4} - \frac {21}{x^{2} - 4 \, x + 4}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^3+6*x^2-18*x+30)*exp((-x^3+3*x^2+6*x-21)/(x^2-4*x+4))/(x^3-6*x^2+12*x-8),x, algorithm="giac")

[Out]

e^(-x^3/(x^2 - 4*x + 4) + 3*x^2/(x^2 - 4*x + 4) + 6*x/(x^2 - 4*x + 4) - 21/(x^2 - 4*x + 4))

________________________________________________________________________________________

maple [A]  time = 0.11, size = 22, normalized size = 1.00




method result size



risch \({\mathrm e}^{-\frac {x^{3}-3 x^{2}-6 x +21}{\left (x -2\right )^{2}}}\) \(22\)
gosper \({\mathrm e}^{-\frac {x^{3}-3 x^{2}-6 x +21}{x^{2}-4 x +4}}\) \(27\)
norman \(\frac {x^{2} {\mathrm e}^{\frac {-x^{3}+3 x^{2}+6 x -21}{x^{2}-4 x +4}}-4 x \,{\mathrm e}^{\frac {-x^{3}+3 x^{2}+6 x -21}{x^{2}-4 x +4}}+4 \,{\mathrm e}^{\frac {-x^{3}+3 x^{2}+6 x -21}{x^{2}-4 x +4}}}{\left (x -2\right )^{2}}\) \(98\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-x^3+6*x^2-18*x+30)*exp((-x^3+3*x^2+6*x-21)/(x^2-4*x+4))/(x^3-6*x^2+12*x-8),x,method=_RETURNVERBOSE)

[Out]

exp(-(x^3-3*x^2-6*x+21)/(x-2)^2)

________________________________________________________________________________________

maxima [A]  time = 0.70, size = 25, normalized size = 1.14 \begin {gather*} e^{\left (-x - \frac {5}{x^{2} - 4 \, x + 4} + \frac {6}{x - 2} - 1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^3+6*x^2-18*x+30)*exp((-x^3+3*x^2+6*x-21)/(x^2-4*x+4))/(x^3-6*x^2+12*x-8),x, algorithm="maxima")

[Out]

e^(-x - 5/(x^2 - 4*x + 4) + 6/(x - 2) - 1)

________________________________________________________________________________________

mupad [B]  time = 0.16, size = 60, normalized size = 2.73 \begin {gather*} {\mathrm {e}}^{-\frac {x^3}{x^2-4\,x+4}}\,{\mathrm {e}}^{\frac {3\,x^2}{x^2-4\,x+4}}\,{\mathrm {e}}^{-\frac {21}{x^2-4\,x+4}}\,{\mathrm {e}}^{\frac {6\,x}{x^2-4\,x+4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp((6*x + 3*x^2 - x^3 - 21)/(x^2 - 4*x + 4))*(18*x - 6*x^2 + x^3 - 30))/(12*x - 6*x^2 + x^3 - 8),x)

[Out]

exp(-x^3/(x^2 - 4*x + 4))*exp((3*x^2)/(x^2 - 4*x + 4))*exp(-21/(x^2 - 4*x + 4))*exp((6*x)/(x^2 - 4*x + 4))

________________________________________________________________________________________

sympy [A]  time = 0.20, size = 22, normalized size = 1.00 \begin {gather*} e^{\frac {- x^{3} + 3 x^{2} + 6 x - 21}{x^{2} - 4 x + 4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x**3+6*x**2-18*x+30)*exp((-x**3+3*x**2+6*x-21)/(x**2-4*x+4))/(x**3-6*x**2+12*x-8),x)

[Out]

exp((-x**3 + 3*x**2 + 6*x - 21)/(x**2 - 4*x + 4))

________________________________________________________________________________________