Optimal. Leaf size=23 \[ \frac {1}{5+\frac {3+2 x+\frac {e^{-x} x}{5}}{x}} \]
________________________________________________________________________________________
Rubi [F] time = 1.76, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {75 e^{2 x}+5 e^x x^2}{x^2+e^x \left (30 x+70 x^2\right )+e^{2 x} \left (225+1050 x+1225 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 e^x \left (15 e^x+x^2\right )}{\left (x+5 e^x (3+7 x)\right )^2} \, dx\\ &=5 \int \frac {e^x \left (15 e^x+x^2\right )}{\left (x+5 e^x (3+7 x)\right )^2} \, dx\\ &=5 \int \left (\frac {3 e^x}{(3+7 x) \left (15 e^x+x+35 e^x x\right )}+\frac {e^x x \left (-3+3 x+7 x^2\right )}{(3+7 x) \left (15 e^x+x+35 e^x x\right )^2}\right ) \, dx\\ &=5 \int \frac {e^x x \left (-3+3 x+7 x^2\right )}{(3+7 x) \left (15 e^x+x+35 e^x x\right )^2} \, dx+15 \int \frac {e^x}{(3+7 x) \left (15 e^x+x+35 e^x x\right )} \, dx\\ &=5 \int \left (-\frac {3 e^x}{7 \left (15 e^x+x+35 e^x x\right )^2}+\frac {e^x x^2}{\left (15 e^x+x+35 e^x x\right )^2}+\frac {9 e^x}{7 (3+7 x) \left (15 e^x+x+35 e^x x\right )^2}\right ) \, dx+15 \int \frac {e^x}{(3+7 x) \left (15 e^x+x+35 e^x x\right )} \, dx\\ &=-\left (\frac {15}{7} \int \frac {e^x}{\left (15 e^x+x+35 e^x x\right )^2} \, dx\right )+5 \int \frac {e^x x^2}{\left (15 e^x+x+35 e^x x\right )^2} \, dx+\frac {45}{7} \int \frac {e^x}{(3+7 x) \left (15 e^x+x+35 e^x x\right )^2} \, dx+15 \int \frac {e^x}{(3+7 x) \left (15 e^x+x+35 e^x x\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.31, size = 25, normalized size = 1.09 \begin {gather*} -\frac {15 e^x+x}{7 \left (x+5 e^x (3+7 x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 21, normalized size = 0.91 \begin {gather*} -\frac {x + 15 \, e^{x}}{7 \, {\left (5 \, {\left (7 \, x + 3\right )} e^{x} + x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 21, normalized size = 0.91 \begin {gather*} -\frac {x + 15 \, e^{x}}{7 \, {\left (35 \, x e^{x} + x + 15 \, e^{x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 19, normalized size = 0.83
method | result | size |
norman | \(\frac {5 \,{\mathrm e}^{x} x}{35 \,{\mathrm e}^{x} x +15 \,{\mathrm e}^{x}+x}\) | \(19\) |
risch | \(-\frac {3}{49 \left (x +\frac {3}{7}\right )}-\frac {x^{2}}{\left (7 x +3\right ) \left (35 \,{\mathrm e}^{x} x +15 \,{\mathrm e}^{x}+x \right )}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 21, normalized size = 0.91 \begin {gather*} -\frac {x + 15 \, e^{x}}{7 \, {\left (5 \, {\left (7 \, x + 3\right )} e^{x} + x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.23, size = 34, normalized size = 1.48 \begin {gather*} \frac {x}{7\,x+3}-\frac {x^2}{\left (7\,x+3\right )\,\left (x+{\mathrm {e}}^x\,\left (35\,x+15\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.22, size = 32, normalized size = 1.39 \begin {gather*} - \frac {x^{2}}{7 x^{2} + 3 x + \left (245 x^{2} + 210 x + 45\right ) e^{x}} - \frac {3}{49 x + 21} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________