Optimal. Leaf size=26 \[ \frac {3 (-1+x)}{6-\frac {1}{x}-\frac {1}{\log \left (-\frac {3}{2 x}\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 1.74, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-3 x+3 x^2-3 x^2 \log \left (-\frac {3}{2 x}\right )+\left (3-6 x+18 x^2\right ) \log ^2\left (-\frac {3}{2 x}\right )}{x^2+\left (2 x-12 x^2\right ) \log \left (-\frac {3}{2 x}\right )+\left (1-12 x+36 x^2\right ) \log ^2\left (-\frac {3}{2 x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 \left ((-1+x) x-x^2 \log \left (-\frac {3}{2 x}\right )+\left (1-2 x+6 x^2\right ) \log ^2\left (-\frac {3}{2 x}\right )\right )}{\left (x+(1-6 x) \log \left (-\frac {3}{2 x}\right )\right )^2} \, dx\\ &=3 \int \frac {(-1+x) x-x^2 \log \left (-\frac {3}{2 x}\right )+\left (1-2 x+6 x^2\right ) \log ^2\left (-\frac {3}{2 x}\right )}{\left (x+(1-6 x) \log \left (-\frac {3}{2 x}\right )\right )^2} \, dx\\ &=3 \int \left (\frac {1-2 x+6 x^2}{(-1+6 x)^2}+\frac {x \left (-1+14 x-49 x^2+36 x^3\right )}{(-1+6 x)^2 \left (-x-\log \left (-\frac {3}{2 x}\right )+6 x \log \left (-\frac {3}{2 x}\right )\right )^2}+\frac {x \left (2-3 x+6 x^2\right )}{(-1+6 x)^2 \left (-x-\log \left (-\frac {3}{2 x}\right )+6 x \log \left (-\frac {3}{2 x}\right )\right )}\right ) \, dx\\ &=3 \int \frac {1-2 x+6 x^2}{(-1+6 x)^2} \, dx+3 \int \frac {x \left (-1+14 x-49 x^2+36 x^3\right )}{(-1+6 x)^2 \left (-x-\log \left (-\frac {3}{2 x}\right )+6 x \log \left (-\frac {3}{2 x}\right )\right )^2} \, dx+3 \int \frac {x \left (2-3 x+6 x^2\right )}{(-1+6 x)^2 \left (-x-\log \left (-\frac {3}{2 x}\right )+6 x \log \left (-\frac {3}{2 x}\right )\right )} \, dx\\ &=3 \int \left (\frac {1}{6}+\frac {5}{6 (-1+6 x)^2}\right ) \, dx+3 \int \frac {x \left (-1+14 x-49 x^2+36 x^3\right )}{(1-6 x)^2 \left (x+(1-6 x) \log \left (-\frac {3}{2 x}\right )\right )^2} \, dx+3 \int \left (-\frac {1}{36 \left (-x-\log \left (-\frac {3}{2 x}\right )+6 x \log \left (-\frac {3}{2 x}\right )\right )}+\frac {x}{6 \left (-x-\log \left (-\frac {3}{2 x}\right )+6 x \log \left (-\frac {3}{2 x}\right )\right )}+\frac {5}{18 (-1+6 x)^2 \left (-x-\log \left (-\frac {3}{2 x}\right )+6 x \log \left (-\frac {3}{2 x}\right )\right )}+\frac {1}{4 (-1+6 x) \left (-x-\log \left (-\frac {3}{2 x}\right )+6 x \log \left (-\frac {3}{2 x}\right )\right )}\right ) \, dx\\ &=\frac {5}{12 (1-6 x)}+\frac {x}{2}-\frac {1}{12} \int \frac {1}{-x-\log \left (-\frac {3}{2 x}\right )+6 x \log \left (-\frac {3}{2 x}\right )} \, dx+\frac {1}{2} \int \frac {x}{-x-\log \left (-\frac {3}{2 x}\right )+6 x \log \left (-\frac {3}{2 x}\right )} \, dx+\frac {3}{4} \int \frac {1}{(-1+6 x) \left (-x-\log \left (-\frac {3}{2 x}\right )+6 x \log \left (-\frac {3}{2 x}\right )\right )} \, dx+\frac {5}{6} \int \frac {1}{(-1+6 x)^2 \left (-x-\log \left (-\frac {3}{2 x}\right )+6 x \log \left (-\frac {3}{2 x}\right )\right )} \, dx+3 \int \left (\frac {1}{54 \left (-x-\log \left (-\frac {3}{2 x}\right )+6 x \log \left (-\frac {3}{2 x}\right )\right )^2}-\frac {37 x}{36 \left (-x-\log \left (-\frac {3}{2 x}\right )+6 x \log \left (-\frac {3}{2 x}\right )\right )^2}+\frac {x^2}{\left (-x-\log \left (-\frac {3}{2 x}\right )+6 x \log \left (-\frac {3}{2 x}\right )\right )^2}+\frac {5}{216 (-1+6 x)^2 \left (-x-\log \left (-\frac {3}{2 x}\right )+6 x \log \left (-\frac {3}{2 x}\right )\right )^2}+\frac {1}{24 (-1+6 x) \left (-x-\log \left (-\frac {3}{2 x}\right )+6 x \log \left (-\frac {3}{2 x}\right )\right )^2}\right ) \, dx\\ &=\frac {5}{12 (1-6 x)}+\frac {x}{2}+\frac {1}{18} \int \frac {1}{\left (-x-\log \left (-\frac {3}{2 x}\right )+6 x \log \left (-\frac {3}{2 x}\right )\right )^2} \, dx+\frac {5}{72} \int \frac {1}{(-1+6 x)^2 \left (-x-\log \left (-\frac {3}{2 x}\right )+6 x \log \left (-\frac {3}{2 x}\right )\right )^2} \, dx-\frac {1}{12} \int \frac {1}{-x+(-1+6 x) \log \left (-\frac {3}{2 x}\right )} \, dx+\frac {1}{8} \int \frac {1}{(-1+6 x) \left (-x-\log \left (-\frac {3}{2 x}\right )+6 x \log \left (-\frac {3}{2 x}\right )\right )^2} \, dx+\frac {1}{2} \int \frac {x}{-x+(-1+6 x) \log \left (-\frac {3}{2 x}\right )} \, dx+\frac {3}{4} \int \frac {1}{(-1+6 x) \left (-x-\log \left (-\frac {3}{2 x}\right )+6 x \log \left (-\frac {3}{2 x}\right )\right )} \, dx+\frac {5}{6} \int \frac {1}{(-1+6 x)^2 \left (-x-\log \left (-\frac {3}{2 x}\right )+6 x \log \left (-\frac {3}{2 x}\right )\right )} \, dx+3 \int \frac {x^2}{\left (-x-\log \left (-\frac {3}{2 x}\right )+6 x \log \left (-\frac {3}{2 x}\right )\right )^2} \, dx-\frac {37}{12} \int \frac {x}{\left (-x-\log \left (-\frac {3}{2 x}\right )+6 x \log \left (-\frac {3}{2 x}\right )\right )^2} \, dx\\ &=\frac {5}{12 (1-6 x)}+\frac {x}{2}+\frac {1}{18} \int \frac {1}{\left (x+(1-6 x) \log \left (-\frac {3}{2 x}\right )\right )^2} \, dx+\frac {5}{72} \int \frac {1}{(1-6 x)^2 \left (x+(1-6 x) \log \left (-\frac {3}{2 x}\right )\right )^2} \, dx-\frac {1}{12} \int \frac {1}{-x+(-1+6 x) \log \left (-\frac {3}{2 x}\right )} \, dx+\frac {1}{8} \int \frac {1}{(-1+6 x) \left (x+(1-6 x) \log \left (-\frac {3}{2 x}\right )\right )^2} \, dx+\frac {1}{2} \int \frac {x}{-x+(-1+6 x) \log \left (-\frac {3}{2 x}\right )} \, dx+\frac {3}{4} \int \frac {1}{(-1+6 x) \left (-x-\log \left (-\frac {3}{2 x}\right )+6 x \log \left (-\frac {3}{2 x}\right )\right )} \, dx+\frac {5}{6} \int \frac {1}{(-1+6 x)^2 \left (-x-\log \left (-\frac {3}{2 x}\right )+6 x \log \left (-\frac {3}{2 x}\right )\right )} \, dx+3 \int \frac {x^2}{\left (x+(1-6 x) \log \left (-\frac {3}{2 x}\right )\right )^2} \, dx-\frac {37}{12} \int \frac {x}{\left (x+(1-6 x) \log \left (-\frac {3}{2 x}\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.56, size = 47, normalized size = 1.81 \begin {gather*} \frac {-5 x+\left (-5-6 x+36 x^2\right ) \log \left (-\frac {3}{2 x}\right )}{12 \left (-x+(-1+6 x) \log \left (-\frac {3}{2 x}\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.71, size = 41, normalized size = 1.58 \begin {gather*} \frac {{\left (36 \, x^{2} - 6 \, x - 5\right )} \log \left (-\frac {3}{2 \, x}\right ) - 5 \, x}{12 \, {\left ({\left (6 \, x - 1\right )} \log \left (-\frac {3}{2 \, x}\right ) - x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.29, size = 63, normalized size = 2.42 \begin {gather*} \frac {1}{2} \, x - \frac {3 \, {\left (\frac {1}{x} - 1\right )}}{\frac {36 \, \log \left (-\frac {3}{2 \, x}\right )}{x} - \frac {6}{x} - \frac {12 \, \log \left (-\frac {3}{2 \, x}\right )}{x^{2}} + \frac {1}{x^{2}} + \frac {\log \left (-\frac {3}{2 \, x}\right )}{x^{3}}} + \frac {5}{2 \, {\left (\frac {1}{x} - 6\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 46, normalized size = 1.77
method | result | size |
norman | \(\frac {-3 x \ln \left (-\frac {3}{2 x}\right )+3 x^{2} \ln \left (-\frac {3}{2 x}\right )}{6 x \ln \left (-\frac {3}{2 x}\right )-\ln \left (-\frac {3}{2 x}\right )-x}\) | \(46\) |
risch | \(\frac {36 x^{2}-6 x -5}{72 x -12}+\frac {3 x^{2} \left (x -1\right )}{\left (6 x -1\right ) \left (6 x \ln \left (-\frac {3}{2 x}\right )-\ln \left (-\frac {3}{2 x}\right )-x \right )}\) | \(59\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.55, size = 84, normalized size = 3.23 \begin {gather*} \frac {36 \, x^{2} {\left (\log \relax (3) - \log \relax (2)\right )} - x {\left (6 \, \log \relax (3) - 6 \, \log \relax (2) + 5\right )} - {\left (36 \, x^{2} - 6 \, x - 5\right )} \log \left (-x\right ) - 5 \, \log \relax (3) + 5 \, \log \relax (2)}{12 \, {\left (x {\left (6 \, \log \relax (3) - 6 \, \log \relax (2) - 1\right )} - {\left (6 \, x - 1\right )} \log \left (-x\right ) - \log \relax (3) + \log \relax (2)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.44, size = 31, normalized size = 1.19 \begin {gather*} -\frac {3\,x\,\ln \left (-\frac {3}{2\,x}\right )\,\left (x-1\right )}{x+\ln \left (-\frac {3}{2\,x}\right )-6\,x\,\ln \left (-\frac {3}{2\,x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.33, size = 44, normalized size = 1.69 \begin {gather*} \frac {x}{2} + \frac {3 x^{3} - 3 x^{2}}{- 6 x^{2} + x + \left (36 x^{2} - 12 x + 1\right ) \log {\left (- \frac {3}{2 x} \right )}} - \frac {5}{72 x - 12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________