Optimal. Leaf size=20 \[ -4+\frac {3 e^5}{7 x^2}+x-\frac {1}{1+x} \]
________________________________________________________________________________________
Rubi [A] time = 0.08, antiderivative size = 19, normalized size of antiderivative = 0.95, number of steps used = 5, number of rules used = 4, integrand size = 54, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {12, 1585, 27, 1620} \begin {gather*} \frac {3 e^5}{7 x^2}+x-\frac {1}{x+1} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 1585
Rule 1620
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{7} e^5 \int \frac {-6-12 x-6 x^2+\frac {7 x \left (2 x^2+2 x^3+x^4\right )}{e^5}}{x \left (x^2+2 x^3+x^4\right )} \, dx\\ &=\frac {1}{7} e^5 \int \frac {-6-12 x-6 x^2+\frac {7 x \left (2 x^2+2 x^3+x^4\right )}{e^5}}{x^3 \left (1+2 x+x^2\right )} \, dx\\ &=\frac {1}{7} e^5 \int \frac {-6-12 x-6 x^2+\frac {7 x \left (2 x^2+2 x^3+x^4\right )}{e^5}}{x^3 (1+x)^2} \, dx\\ &=\frac {1}{7} e^5 \int \left (\frac {7}{e^5}-\frac {6}{x^3}+\frac {7}{e^5 (1+x)^2}\right ) \, dx\\ &=\frac {3 e^5}{7 x^2}+x-\frac {1}{1+x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 19, normalized size = 0.95 \begin {gather*} \frac {3 e^5}{7 x^2}+x-\frac {1}{1+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 40, normalized size = 2.00 \begin {gather*} \frac {{\left ({\left (x^{4} + x^{3} - x^{2}\right )} e^{\left (\log \relax (7) - 5\right )} + 3 \, x + 3\right )} e^{\left (-\log \relax (7) + 5\right )}}{x^{3} + x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.26, size = 16, normalized size = 0.80 \begin {gather*} x - \frac {1}{x + 1} + \frac {3 \, e^{5}}{7 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 17, normalized size = 0.85
method | result | size |
default | \(x -\frac {1}{x +1}+\frac {3 \,{\mathrm e}^{5}}{7 x^{2}}\) | \(17\) |
risch | \(x +\frac {{\mathrm e}^{5} \left (-7 x^{2} {\mathrm e}^{-5}+3 x +3\right )}{7 \left (x +1\right ) x^{2}}\) | \(27\) |
norman | \(\frac {x^{4}-2 x^{2}+\frac {3 x \,{\mathrm e}^{5}}{7}+\frac {3 \,{\mathrm e}^{5}}{7}}{\left (x +1\right ) x^{2}}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 42, normalized size = 2.10 \begin {gather*} \frac {1}{7} \, {\left (7 \, x e^{\left (-5\right )} - \frac {7 \, x^{2} - 3 \, x e^{5} - 3 \, e^{5}}{x^{3} e^{5} + x^{2} e^{5}}\right )} e^{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 16, normalized size = 0.80 \begin {gather*} x-\frac {1}{x+1}+\frac {3\,{\mathrm {e}}^5}{7\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.39, size = 27, normalized size = 1.35 \begin {gather*} x + \frac {- 7 x^{2} + 3 x e^{5} + 3 e^{5}}{7 x^{3} + 7 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________