3.21.96 \(\int \frac {e^{50} (-8-4 x)-18 x-16 x^2-4 x^3+e^{25} (-16-24 x-8 x^2)+(e^{50} (-4-2 x)-8 x-8 x^2-2 x^3+e^{25} (-8-12 x-4 x^2)) \log (\frac {20+10 e^{25}+10 x}{e^{25}+x})+(2 e^{50}+4 x+2 x^2+e^{25} (4+4 x)+(e^{50}+2 x+x^2+e^{25} (2+2 x)) \log (\frac {20+10 e^{25}+10 x}{e^{25}+x})) \log (4 x+2 x \log (\frac {20+10 e^{25}+10 x}{e^{25}+x}))}{2 e^{50}+4 x+2 x^2+e^{25} (4+4 x)+(e^{50}+2 x+x^2+e^{25} (2+2 x)) \log (\frac {20+10 e^{25}+10 x}{e^{25}+x})} \, dx\)

Optimal. Leaf size=27 \[ x \left (-5-x+\log \left (2 x \left (2+\log \left (5 \left (2+\frac {4}{e^{25}+x}\right )\right )\right )\right )\right ) \]

________________________________________________________________________________________

Rubi [F]  time = 4.72, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{50} (-8-4 x)-18 x-16 x^2-4 x^3+e^{25} \left (-16-24 x-8 x^2\right )+\left (e^{50} (-4-2 x)-8 x-8 x^2-2 x^3+e^{25} \left (-8-12 x-4 x^2\right )\right ) \log \left (\frac {20+10 e^{25}+10 x}{e^{25}+x}\right )+\left (2 e^{50}+4 x+2 x^2+e^{25} (4+4 x)+\left (e^{50}+2 x+x^2+e^{25} (2+2 x)\right ) \log \left (\frac {20+10 e^{25}+10 x}{e^{25}+x}\right )\right ) \log \left (4 x+2 x \log \left (\frac {20+10 e^{25}+10 x}{e^{25}+x}\right )\right )}{2 e^{50}+4 x+2 x^2+e^{25} (4+4 x)+\left (e^{50}+2 x+x^2+e^{25} (2+2 x)\right ) \log \left (\frac {20+10 e^{25}+10 x}{e^{25}+x}\right )} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[(E^50*(-8 - 4*x) - 18*x - 16*x^2 - 4*x^3 + E^25*(-16 - 24*x - 8*x^2) + (E^50*(-4 - 2*x) - 8*x - 8*x^2 - 2*
x^3 + E^25*(-8 - 12*x - 4*x^2))*Log[(20 + 10*E^25 + 10*x)/(E^25 + x)] + (2*E^50 + 4*x + 2*x^2 + E^25*(4 + 4*x)
 + (E^50 + 2*x + x^2 + E^25*(2 + 2*x))*Log[(20 + 10*E^25 + 10*x)/(E^25 + x)])*Log[4*x + 2*x*Log[(20 + 10*E^25
+ 10*x)/(E^25 + x)]])/(2*E^50 + 4*x + 2*x^2 + E^25*(4 + 4*x) + (E^50 + 2*x + x^2 + E^25*(2 + 2*x))*Log[(20 + 1
0*E^25 + 10*x)/(E^25 + x)]),x]

[Out]

-5*x - x^2 + x*Log[2*x*(2 + Log[(10*(2 + E^25 + x))/(E^25 + x)])] - 8*Defer[Int][(2 + Log[(10*(2 + E^25 + x))/
(E^25 + x)])^(-1), x] - 8*E^25*Defer[Int][(2 + Log[(10*(2 + E^25 + x))/(E^25 + x)])^(-1), x] + 8*(1 + E^25)*De
fer[Int][(2 + Log[(10*(2 + E^25 + x))/(E^25 + x)])^(-1), x] + 8*E^25*Defer[Int][1/((E^25 + x)*(2 + Log[(10*(2
+ E^25 + x))/(E^25 + x)])), x] - 8*E^50*Defer[Int][1/((E^25 + x)*(2 + Log[(10*(2 + E^25 + x))/(E^25 + x)])), x
] + 2*E^75*Defer[Int][1/((E^25 + x)*(2 + Log[(10*(2 + E^25 + x))/(E^25 + x)])), x] - 2*E^50*(2 - E^25)*Defer[I
nt][1/((E^25 + x)*(2 + Log[(10*(2 + E^25 + x))/(E^25 + x)])), x] - 4*E^25*(2 - 3*E^25 + E^50)*Defer[Int][1/((E
^25 + x)*(2 + Log[(10*(2 + E^25 + x))/(E^25 + x)])), x] - 2*E^75*Defer[Int][1/((2 + E^25 + x)*(2 + Log[(10*(2
+ E^25 + x))/(E^25 + x)])), x] + 4*E^50*(1 + E^25)*Defer[Int][1/((2 + E^25 + x)*(2 + Log[(10*(2 + E^25 + x))/(
E^25 + x)])), x] - 8*(2 + E^25)*Defer[Int][1/((2 + E^25 + x)*(2 + Log[(10*(2 + E^25 + x))/(E^25 + x)])), x] +
8*(2 + E^25)^2*Defer[Int][1/((2 + E^25 + x)*(2 + Log[(10*(2 + E^25 + x))/(E^25 + x)])), x] - 2*(2 + E^25)^3*De
fer[Int][1/((2 + E^25 + x)*(2 + Log[(10*(2 + E^25 + x))/(E^25 + x)])), x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-18 x-16 x^2-4 x^3-4 e^{50} (2+x)-8 e^{25} \left (2+3 x+x^2\right )-2 \left (e^{50} (2+x)+x (2+x)^2+2 e^{25} \left (2+3 x+x^2\right )\right ) \log \left (\frac {10 \left (2+e^{25}+x\right )}{e^{25}+x}\right )+\left (e^{50}+2 e^{25} (1+x)+x (2+x)\right ) \left (2+\log \left (\frac {10 \left (2+e^{25}+x\right )}{e^{25}+x}\right )\right ) \log \left (2 x \left (2+\log \left (\frac {10 \left (2+e^{25}+x\right )}{e^{25}+x}\right )\right )\right )}{\left (e^{25} \left (2+e^{25}\right )+2 \left (1+e^{25}\right ) x+x^2\right ) \left (2+\log \left (\frac {10 \left (2+e^{25}+x\right )}{e^{25}+x}\right )\right )} \, dx\\ &=\int \left (-\frac {18 x}{\left (e^{25}+x\right ) \left (2+e^{25}+x\right ) \left (2+\log \left (\frac {10 \left (2+e^{25}+x\right )}{e^{25}+x}\right )\right )}-\frac {16 x^2}{\left (e^{25}+x\right ) \left (2+e^{25}+x\right ) \left (2+\log \left (\frac {10 \left (2+e^{25}+x\right )}{e^{25}+x}\right )\right )}-\frac {4 x^3}{\left (e^{25}+x\right ) \left (2+e^{25}+x\right ) \left (2+\log \left (\frac {10 \left (2+e^{25}+x\right )}{e^{25}+x}\right )\right )}-\frac {4 e^{50} (2+x)}{\left (e^{25}+x\right ) \left (2+e^{25}+x\right ) \left (2+\log \left (\frac {10 \left (2+e^{25}+x\right )}{e^{25}+x}\right )\right )}-\frac {8 e^{25} (1+x) (2+x)}{\left (e^{25}+x\right ) \left (2+e^{25}+x\right ) \left (2+\log \left (\frac {10 \left (2+e^{25}+x\right )}{e^{25}+x}\right )\right )}-\frac {2 (2+x) \log \left (\frac {10 \left (2+e^{25}+x\right )}{e^{25}+x}\right )}{2+\log \left (\frac {10 \left (2+e^{25}+x\right )}{e^{25}+x}\right )}+\log \left (2 x \left (2+\log \left (\frac {10 \left (2+e^{25}+x\right )}{e^{25}+x}\right )\right )\right )\right ) \, dx\\ &=-\left (2 \int \frac {(2+x) \log \left (\frac {10 \left (2+e^{25}+x\right )}{e^{25}+x}\right )}{2+\log \left (\frac {10 \left (2+e^{25}+x\right )}{e^{25}+x}\right )} \, dx\right )-4 \int \frac {x^3}{\left (e^{25}+x\right ) \left (2+e^{25}+x\right ) \left (2+\log \left (\frac {10 \left (2+e^{25}+x\right )}{e^{25}+x}\right )\right )} \, dx-16 \int \frac {x^2}{\left (e^{25}+x\right ) \left (2+e^{25}+x\right ) \left (2+\log \left (\frac {10 \left (2+e^{25}+x\right )}{e^{25}+x}\right )\right )} \, dx-18 \int \frac {x}{\left (e^{25}+x\right ) \left (2+e^{25}+x\right ) \left (2+\log \left (\frac {10 \left (2+e^{25}+x\right )}{e^{25}+x}\right )\right )} \, dx-\left (8 e^{25}\right ) \int \frac {(1+x) (2+x)}{\left (e^{25}+x\right ) \left (2+e^{25}+x\right ) \left (2+\log \left (\frac {10 \left (2+e^{25}+x\right )}{e^{25}+x}\right )\right )} \, dx-\left (4 e^{50}\right ) \int \frac {2+x}{\left (e^{25}+x\right ) \left (2+e^{25}+x\right ) \left (2+\log \left (\frac {10 \left (2+e^{25}+x\right )}{e^{25}+x}\right )\right )} \, dx+\int \log \left (2 x \left (2+\log \left (\frac {10 \left (2+e^{25}+x\right )}{e^{25}+x}\right )\right )\right ) \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.27, size = 33, normalized size = 1.22 \begin {gather*} -5 x-x^2+x \log \left (2 x \left (2+\log \left (\frac {10 \left (2+e^{25}+x\right )}{e^{25}+x}\right )\right )\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(E^50*(-8 - 4*x) - 18*x - 16*x^2 - 4*x^3 + E^25*(-16 - 24*x - 8*x^2) + (E^50*(-4 - 2*x) - 8*x - 8*x^
2 - 2*x^3 + E^25*(-8 - 12*x - 4*x^2))*Log[(20 + 10*E^25 + 10*x)/(E^25 + x)] + (2*E^50 + 4*x + 2*x^2 + E^25*(4
+ 4*x) + (E^50 + 2*x + x^2 + E^25*(2 + 2*x))*Log[(20 + 10*E^25 + 10*x)/(E^25 + x)])*Log[4*x + 2*x*Log[(20 + 10
*E^25 + 10*x)/(E^25 + x)]])/(2*E^50 + 4*x + 2*x^2 + E^25*(4 + 4*x) + (E^50 + 2*x + x^2 + E^25*(2 + 2*x))*Log[(
20 + 10*E^25 + 10*x)/(E^25 + x)]),x]

[Out]

-5*x - x^2 + x*Log[2*x*(2 + Log[(10*(2 + E^25 + x))/(E^25 + x)])]

________________________________________________________________________________________

fricas [A]  time = 1.03, size = 33, normalized size = 1.22 \begin {gather*} -x^{2} + x \log \left (2 \, x \log \left (\frac {10 \, {\left (x + e^{25} + 2\right )}}{x + e^{25}}\right ) + 4 \, x\right ) - 5 \, x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((exp(25)^2+(2*x+2)*exp(25)+x^2+2*x)*log((10*exp(25)+10*x+20)/(exp(25)+x))+2*exp(25)^2+(4*x+4)*exp(
25)+2*x^2+4*x)*log(2*x*log((10*exp(25)+10*x+20)/(exp(25)+x))+4*x)+((-2*x-4)*exp(25)^2+(-4*x^2-12*x-8)*exp(25)-
2*x^3-8*x^2-8*x)*log((10*exp(25)+10*x+20)/(exp(25)+x))+(-4*x-8)*exp(25)^2+(-8*x^2-24*x-16)*exp(25)-4*x^3-16*x^
2-18*x)/((exp(25)^2+(2*x+2)*exp(25)+x^2+2*x)*log((10*exp(25)+10*x+20)/(exp(25)+x))+2*exp(25)^2+(4*x+4)*exp(25)
+2*x^2+4*x),x, algorithm="fricas")

[Out]

-x^2 + x*log(2*x*log(10*(x + e^25 + 2)/(x + e^25)) + 4*x) - 5*x

________________________________________________________________________________________

giac [B]  time = 6.71, size = 254, normalized size = 9.41 \begin {gather*} -e^{50} \log \relax (2) \log \left (x + e^{25} + 2\right ) - e^{25} \log \relax (2) \log \left (x + e^{25} + 2\right ) - e^{50} \log \relax (2) \log \left (x + e^{25}\right ) + e^{25} \log \relax (2) \log \left (x + e^{25}\right ) + e^{50} \log \relax (2) \log \left (-x - e^{25}\right ) - e^{25} \log \relax (2) \log \left (-x - e^{25}\right ) + e^{50} \log \relax (2) \log \left (-x - e^{25} - 2\right ) + e^{25} \log \relax (2) \log \left (-x - e^{25} - 2\right ) - x^{2} + x \log \relax (2) + x \log \left (x \log \left (\frac {10 \, {\left (x + e^{25} + 2\right )}}{x + e^{25}}\right ) + 2 \, x\right ) - 2 \, e^{75} \log \left (x + e^{25} + 2\right ) - 2 \, e^{50} \log \left (x + e^{25} + 2\right ) - 2 \, e^{75} \log \left (x + e^{25}\right ) + 6 \, e^{50} \log \left (x + e^{25}\right ) - 4 \, e^{25} \log \left (x + e^{25}\right ) + 2 \, e^{75} \log \left (-x - e^{25}\right ) - 6 \, e^{50} \log \left (-x - e^{25}\right ) + 4 \, e^{25} \log \left (-x - e^{25}\right ) + 2 \, e^{75} \log \left (-x - e^{25} - 2\right ) + 2 \, e^{50} \log \left (-x - e^{25} - 2\right ) - 5 \, x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((exp(25)^2+(2*x+2)*exp(25)+x^2+2*x)*log((10*exp(25)+10*x+20)/(exp(25)+x))+2*exp(25)^2+(4*x+4)*exp(
25)+2*x^2+4*x)*log(2*x*log((10*exp(25)+10*x+20)/(exp(25)+x))+4*x)+((-2*x-4)*exp(25)^2+(-4*x^2-12*x-8)*exp(25)-
2*x^3-8*x^2-8*x)*log((10*exp(25)+10*x+20)/(exp(25)+x))+(-4*x-8)*exp(25)^2+(-8*x^2-24*x-16)*exp(25)-4*x^3-16*x^
2-18*x)/((exp(25)^2+(2*x+2)*exp(25)+x^2+2*x)*log((10*exp(25)+10*x+20)/(exp(25)+x))+2*exp(25)^2+(4*x+4)*exp(25)
+2*x^2+4*x),x, algorithm="giac")

[Out]

-e^50*log(2)*log(x + e^25 + 2) - e^25*log(2)*log(x + e^25 + 2) - e^50*log(2)*log(x + e^25) + e^25*log(2)*log(x
 + e^25) + e^50*log(2)*log(-x - e^25) - e^25*log(2)*log(-x - e^25) + e^50*log(2)*log(-x - e^25 - 2) + e^25*log
(2)*log(-x - e^25 - 2) - x^2 + x*log(2) + x*log(x*log(10*(x + e^25 + 2)/(x + e^25)) + 2*x) - 2*e^75*log(x + e^
25 + 2) - 2*e^50*log(x + e^25 + 2) - 2*e^75*log(x + e^25) + 6*e^50*log(x + e^25) - 4*e^25*log(x + e^25) + 2*e^
75*log(-x - e^25) - 6*e^50*log(-x - e^25) + 4*e^25*log(-x - e^25) + 2*e^75*log(-x - e^25 - 2) + 2*e^50*log(-x
- e^25 - 2) - 5*x

________________________________________________________________________________________

maple [F]  time = 0.79, size = 0, normalized size = 0.00 \[\int \frac {\left (\left ({\mathrm e}^{50}+\left (2 x +2\right ) {\mathrm e}^{25}+x^{2}+2 x \right ) \ln \left (\frac {10 \,{\mathrm e}^{25}+10 x +20}{{\mathrm e}^{25}+x}\right )+2 \,{\mathrm e}^{50}+\left (4 x +4\right ) {\mathrm e}^{25}+2 x^{2}+4 x \right ) \ln \left (2 x \ln \left (\frac {10 \,{\mathrm e}^{25}+10 x +20}{{\mathrm e}^{25}+x}\right )+4 x \right )+\left (\left (-2 x -4\right ) {\mathrm e}^{50}+\left (-4 x^{2}-12 x -8\right ) {\mathrm e}^{25}-2 x^{3}-8 x^{2}-8 x \right ) \ln \left (\frac {10 \,{\mathrm e}^{25}+10 x +20}{{\mathrm e}^{25}+x}\right )+\left (-4 x -8\right ) {\mathrm e}^{50}+\left (-8 x^{2}-24 x -16\right ) {\mathrm e}^{25}-4 x^{3}-16 x^{2}-18 x}{\left ({\mathrm e}^{50}+\left (2 x +2\right ) {\mathrm e}^{25}+x^{2}+2 x \right ) \ln \left (\frac {10 \,{\mathrm e}^{25}+10 x +20}{{\mathrm e}^{25}+x}\right )+2 \,{\mathrm e}^{50}+\left (4 x +4\right ) {\mathrm e}^{25}+2 x^{2}+4 x}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((exp(25)^2+(2*x+2)*exp(25)+x^2+2*x)*ln((10*exp(25)+10*x+20)/(exp(25)+x))+2*exp(25)^2+(4*x+4)*exp(25)+2*x
^2+4*x)*ln(2*x*ln((10*exp(25)+10*x+20)/(exp(25)+x))+4*x)+((-2*x-4)*exp(25)^2+(-4*x^2-12*x-8)*exp(25)-2*x^3-8*x
^2-8*x)*ln((10*exp(25)+10*x+20)/(exp(25)+x))+(-4*x-8)*exp(25)^2+(-8*x^2-24*x-16)*exp(25)-4*x^3-16*x^2-18*x)/((
exp(25)^2+(2*x+2)*exp(25)+x^2+2*x)*ln((10*exp(25)+10*x+20)/(exp(25)+x))+2*exp(25)^2+(4*x+4)*exp(25)+2*x^2+4*x)
,x)

[Out]

int((((exp(25)^2+(2*x+2)*exp(25)+x^2+2*x)*ln((10*exp(25)+10*x+20)/(exp(25)+x))+2*exp(25)^2+(4*x+4)*exp(25)+2*x
^2+4*x)*ln(2*x*ln((10*exp(25)+10*x+20)/(exp(25)+x))+4*x)+((-2*x-4)*exp(25)^2+(-4*x^2-12*x-8)*exp(25)-2*x^3-8*x
^2-8*x)*ln((10*exp(25)+10*x+20)/(exp(25)+x))+(-4*x-8)*exp(25)^2+(-8*x^2-24*x-16)*exp(25)-4*x^3-16*x^2-18*x)/((
exp(25)^2+(2*x+2)*exp(25)+x^2+2*x)*ln((10*exp(25)+10*x+20)/(exp(25)+x))+2*exp(25)^2+(4*x+4)*exp(25)+2*x^2+4*x)
,x)

________________________________________________________________________________________

maxima [B]  time = 0.70, size = 95, normalized size = 3.52 \begin {gather*} -x^{2} + x {\left (\log \relax (2) - 5\right )} + x \log \relax (x) + {\left (x - 4 \, e^{50} - 8 \, e^{25}\right )} \log \left (\log \relax (5) + \log \relax (2) + \log \left (x + e^{25} + 2\right ) - \log \left (x + e^{25}\right ) + 2\right ) + 4 \, e^{50} \log \left (\log \relax (5) + \log \relax (2) + \log \left (x + e^{25} + 2\right ) - \log \left (x + e^{25}\right ) + 2\right ) + 8 \, e^{25} \log \left (\log \relax (5) + \log \relax (2) + \log \left (x + e^{25} + 2\right ) - \log \left (x + e^{25}\right ) + 2\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((exp(25)^2+(2*x+2)*exp(25)+x^2+2*x)*log((10*exp(25)+10*x+20)/(exp(25)+x))+2*exp(25)^2+(4*x+4)*exp(
25)+2*x^2+4*x)*log(2*x*log((10*exp(25)+10*x+20)/(exp(25)+x))+4*x)+((-2*x-4)*exp(25)^2+(-4*x^2-12*x-8)*exp(25)-
2*x^3-8*x^2-8*x)*log((10*exp(25)+10*x+20)/(exp(25)+x))+(-4*x-8)*exp(25)^2+(-8*x^2-24*x-16)*exp(25)-4*x^3-16*x^
2-18*x)/((exp(25)^2+(2*x+2)*exp(25)+x^2+2*x)*log((10*exp(25)+10*x+20)/(exp(25)+x))+2*exp(25)^2+(4*x+4)*exp(25)
+2*x^2+4*x),x, algorithm="maxima")

[Out]

-x^2 + x*(log(2) - 5) + x*log(x) + (x - 4*e^50 - 8*e^25)*log(log(5) + log(2) + log(x + e^25 + 2) - log(x + e^2
5) + 2) + 4*e^50*log(log(5) + log(2) + log(x + e^25 + 2) - log(x + e^25) + 2) + 8*e^25*log(log(5) + log(2) + l
og(x + e^25 + 2) - log(x + e^25) + 2)

________________________________________________________________________________________

mupad [B]  time = 2.04, size = 33, normalized size = 1.22 \begin {gather*} -x\,\left (x-\ln \left (4\,x+2\,x\,\ln \left (\frac {10\,x+10\,{\mathrm {e}}^{25}+20}{x+{\mathrm {e}}^{25}}\right )\right )+5\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(18*x + exp(25)*(24*x + 8*x^2 + 16) + log((10*x + 10*exp(25) + 20)/(x + exp(25)))*(8*x + exp(25)*(12*x +
4*x^2 + 8) + 8*x^2 + 2*x^3 + exp(50)*(2*x + 4)) - log(4*x + 2*x*log((10*x + 10*exp(25) + 20)/(x + exp(25))))*(
4*x + 2*exp(50) + log((10*x + 10*exp(25) + 20)/(x + exp(25)))*(2*x + exp(50) + x^2 + exp(25)*(2*x + 2)) + 2*x^
2 + exp(25)*(4*x + 4)) + 16*x^2 + 4*x^3 + exp(50)*(4*x + 8))/(4*x + 2*exp(50) + log((10*x + 10*exp(25) + 20)/(
x + exp(25)))*(2*x + exp(50) + x^2 + exp(25)*(2*x + 2)) + 2*x^2 + exp(25)*(4*x + 4)),x)

[Out]

-x*(x - log(4*x + 2*x*log((10*x + 10*exp(25) + 20)/(x + exp(25)))) + 5)

________________________________________________________________________________________

sympy [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: CoercionFailed} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((exp(25)**2+(2*x+2)*exp(25)+x**2+2*x)*ln((10*exp(25)+10*x+20)/(exp(25)+x))+2*exp(25)**2+(4*x+4)*ex
p(25)+2*x**2+4*x)*ln(2*x*ln((10*exp(25)+10*x+20)/(exp(25)+x))+4*x)+((-2*x-4)*exp(25)**2+(-4*x**2-12*x-8)*exp(2
5)-2*x**3-8*x**2-8*x)*ln((10*exp(25)+10*x+20)/(exp(25)+x))+(-4*x-8)*exp(25)**2+(-8*x**2-24*x-16)*exp(25)-4*x**
3-16*x**2-18*x)/((exp(25)**2+(2*x+2)*exp(25)+x**2+2*x)*ln((10*exp(25)+10*x+20)/(exp(25)+x))+2*exp(25)**2+(4*x+
4)*exp(25)+2*x**2+4*x),x)

[Out]

Exception raised: CoercionFailed

________________________________________________________________________________________