Optimal. Leaf size=19 \[ \frac {2 \left (2-\frac {e^{2 x^2}}{x^2}\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 18, normalized size of antiderivative = 0.95, number of steps used = 3, number of rules used = 2, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.080, Rules used = {14, 2288} \begin {gather*} \frac {4}{x}-\frac {2 e^{2 x^2}}{x^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {4}{x^2}-\frac {2 e^{2 x^2} \left (-3+4 x^2\right )}{x^4}\right ) \, dx\\ &=\frac {4}{x}-2 \int \frac {e^{2 x^2} \left (-3+4 x^2\right )}{x^4} \, dx\\ &=-\frac {2 e^{2 x^2}}{x^3}+\frac {4}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 18, normalized size = 0.95 \begin {gather*} -\frac {2 e^{2 x^2}}{x^3}+\frac {4}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.89, size = 19, normalized size = 1.00 \begin {gather*} \frac {2 \, {\left (2 \, x^{2} - e^{\left (2 \, x^{2}\right )}\right )}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.09, size = 19, normalized size = 1.00 \begin {gather*} \frac {2 \, {\left (2 \, x^{2} - e^{\left (2 \, x^{2}\right )}\right )}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 18, normalized size = 0.95
method | result | size |
default | \(\frac {4}{x}-\frac {2 \,{\mathrm e}^{2 x^{2}}}{x^{3}}\) | \(18\) |
risch | \(\frac {4}{x}-\frac {2 \,{\mathrm e}^{2 x^{2}}}{x^{3}}\) | \(18\) |
norman | \(\frac {4 x^{2}-2 \,{\mathrm e}^{2 x^{2}}}{x^{3}}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.53, size = 50, normalized size = 2.63 \begin {gather*} \frac {4 \, \sqrt {2} \sqrt {-x^{2}} \Gamma \left (-\frac {1}{2}, -2 \, x^{2}\right )}{x} - \frac {6 \, \sqrt {2} \left (-x^{2}\right )^{\frac {3}{2}} \Gamma \left (-\frac {3}{2}, -2 \, x^{2}\right )}{x^{3}} + \frac {4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.18, size = 17, normalized size = 0.89 \begin {gather*} -\frac {2\,\left ({\mathrm {e}}^{2\,x^2}-2\,x^2\right )}{x^3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 14, normalized size = 0.74 \begin {gather*} \frac {4}{x} - \frac {2 e^{2 x^{2}}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________