Optimal. Leaf size=18 \[ \frac {4 e^{\frac {30 x^2}{23}} \log (4 x)}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.23, antiderivative size = 18, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 6, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {12, 14, 2214, 2204, 2554, 6360} \begin {gather*} \frac {4 e^{\frac {30 x^2}{23}} \log (4 x)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2204
Rule 2214
Rule 2554
Rule 6360
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{23} \int \frac {92 e^{\frac {30 x^2}{23}}+e^{\frac {30 x^2}{23}} \left (-92+240 x^2\right ) \log (4 x)}{x^2} \, dx\\ &=\frac {1}{23} \int \left (\frac {92 e^{\frac {30 x^2}{23}}}{x^2}+240 e^{\frac {30 x^2}{23}} \log (4 x)-\frac {92 e^{\frac {30 x^2}{23}} \log (4 x)}{x^2}\right ) \, dx\\ &=4 \int \frac {e^{\frac {30 x^2}{23}}}{x^2} \, dx-4 \int \frac {e^{\frac {30 x^2}{23}} \log (4 x)}{x^2} \, dx+\frac {240}{23} \int e^{\frac {30 x^2}{23}} \log (4 x) \, dx\\ &=-\frac {4 e^{\frac {30 x^2}{23}}}{x}+\frac {4 e^{\frac {30 x^2}{23}} \log (4 x)}{x}+4 \int \left (-\frac {e^{\frac {30 x^2}{23}}}{x^2}+\frac {\sqrt {\frac {30 \pi }{23}} \text {erfi}\left (\sqrt {\frac {30}{23}} x\right )}{x}\right ) \, dx+\frac {240}{23} \int e^{\frac {30 x^2}{23}} \, dx-\frac {240}{23} \int \frac {\sqrt {\frac {23 \pi }{30}} \text {erfi}\left (\sqrt {\frac {30}{23}} x\right )}{2 x} \, dx\\ &=-\frac {4 e^{\frac {30 x^2}{23}}}{x}+4 \sqrt {\frac {30 \pi }{23}} \text {erfi}\left (\sqrt {\frac {30}{23}} x\right )+\frac {4 e^{\frac {30 x^2}{23}} \log (4 x)}{x}-4 \int \frac {e^{\frac {30 x^2}{23}}}{x^2} \, dx\\ &=4 \sqrt {\frac {30 \pi }{23}} \text {erfi}\left (\sqrt {\frac {30}{23}} x\right )+\frac {4 e^{\frac {30 x^2}{23}} \log (4 x)}{x}-\frac {240}{23} \int e^{\frac {30 x^2}{23}} \, dx\\ &=\frac {4 e^{\frac {30 x^2}{23}} \log (4 x)}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 18, normalized size = 1.00 \begin {gather*} \frac {4 e^{\frac {30 x^2}{23}} \log (4 x)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 15, normalized size = 0.83 \begin {gather*} \frac {4 \, e^{\left (\frac {30}{23} \, x^{2}\right )} \log \left (4 \, x\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {4 \, {\left ({\left (60 \, x^{2} - 23\right )} e^{\left (\frac {30}{23} \, x^{2}\right )} \log \left (4 \, x\right ) + 23 \, e^{\left (\frac {30}{23} \, x^{2}\right )}\right )}}{23 \, x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 16, normalized size = 0.89
method | result | size |
norman | \(\frac {4 \,{\mathrm e}^{\frac {30 x^{2}}{23}} \ln \left (4 x \right )}{x}\) | \(16\) |
risch | \(\frac {4 \,{\mathrm e}^{\frac {30 x^{2}}{23}} \ln \left (4 x \right )}{x}\) | \(16\) |
meijerg | \(\left (\frac {2 i \sqrt {690}\, \ln \left (30\right ) \left (\frac {i \sqrt {\pi }}{\sqrt {-x^{2}}}-\frac {i \sqrt {\pi }\, \mathrm {erfc}\left (\frac {\sqrt {30}\, \sqrt {23}\, \sqrt {-x^{2}}}{23}\right )}{\sqrt {-x^{2}}}\right )}{23}-\frac {2 i \sqrt {690}\, \ln \left (23\right ) \left (\frac {i \sqrt {\pi }}{\sqrt {-x^{2}}}-\frac {i \sqrt {\pi }\, \mathrm {erfc}\left (\frac {\sqrt {30}\, \sqrt {23}\, \sqrt {-x^{2}}}{23}\right )}{\sqrt {-x^{2}}}\right )}{23}-\frac {2 \pi \sqrt {30}\, \sqrt {23}\, \left (\frac {i \sqrt {\pi }}{\sqrt {-x^{2}}}-\frac {i \sqrt {\pi }\, \mathrm {erfc}\left (\frac {\sqrt {30}\, \sqrt {23}\, \sqrt {-x^{2}}}{23}\right )}{\sqrt {-x^{2}}}\right )}{23}-\frac {4 i \sqrt {690}\, \left (\frac {i \left (-\gamma -2 \ln \relax (2)\right ) \sqrt {\pi }}{2 \sqrt {-x^{2}}}+\frac {15 i \left (-\frac {23 \ln \left (-\frac {30 x^{2}}{23}\right ) \sqrt {\pi }\, \mathrm {erfc}\left (\frac {\sqrt {30}\, \sqrt {23}\, \sqrt {-x^{2}}}{23}\right )}{30}+\frac {23 \left (\gamma +3 \ln \relax (2)+\ln \relax (3)+\ln \relax (5)-\ln \left (23\right )+\ln \left (-x^{2}\right )\right ) \sqrt {\pi }}{30}\right )}{23 \sqrt {-x^{2}}}+\frac {i \ln \left (-\frac {30 x^{2}}{23}\right ) \sqrt {\pi }\, \mathrm {erfc}\left (\frac {\sqrt {30}\, \sqrt {23}\, \sqrt {-x^{2}}}{23}\right )}{2 \sqrt {-x^{2}}}+\frac {i \ln \left (23\right ) \sqrt {\pi }\, \mathrm {erfc}\left (\frac {\sqrt {30}\, \sqrt {23}\, \sqrt {-x^{2}}}{23}\right )}{2 \sqrt {-x^{2}}}-\frac {\pi ^{\frac {3}{2}}}{2 \sqrt {-x^{2}}}+\frac {i \ln \relax (x ) \sqrt {\pi }}{\sqrt {-x^{2}}}-\frac {i \ln \relax (x ) \sqrt {\pi }\, \mathrm {erfc}\left (\frac {\sqrt {30}\, \sqrt {23}\, \sqrt {-x^{2}}}{23}\right )}{\sqrt {-x^{2}}}-\frac {i \sqrt {\pi }\, \ln \left (-\frac {30 x^{2}}{23}\right )}{2 \sqrt {-x^{2}}}-\frac {i \ln \left (30\right ) \sqrt {\pi }\, \mathrm {erfc}\left (\frac {\sqrt {30}\, \sqrt {23}\, \sqrt {-x^{2}}}{23}\right )}{2 \sqrt {-x^{2}}}-\frac {i \ln \left (23\right ) \sqrt {\pi }}{2 \sqrt {-x^{2}}}+\frac {i \ln \left (30\right ) \sqrt {\pi }}{2 \sqrt {-x^{2}}}+\frac {\pi ^{\frac {3}{2}} \mathrm {erfc}\left (\frac {\sqrt {30}\, \sqrt {23}\, \sqrt {-x^{2}}}{23}\right )}{2 \sqrt {-x^{2}}}\right )}{23}\right ) x +\frac {8 \ln \relax (2) \sqrt {30}\, \sqrt {23}\, \sqrt {\pi }\, \erfi \left (\frac {x \sqrt {30}\, \sqrt {23}}{23}\right )}{23}+\left (\frac {i \sqrt {690}\, \ln \left (30\right ) \left (-\frac {2 i \sqrt {\pi }}{\sqrt {-x^{2}}}+\frac {2 i \sqrt {\pi }\, \mathrm {erfc}\left (\frac {\sqrt {30}\, \sqrt {23}\, \sqrt {-x^{2}}}{23}\right )}{\sqrt {-x^{2}}}\right )}{23}-\frac {i \sqrt {690}\, \ln \left (23\right ) \left (-\frac {2 i \sqrt {\pi }}{\sqrt {-x^{2}}}+\frac {2 i \sqrt {\pi }\, \mathrm {erfc}\left (\frac {\sqrt {30}\, \sqrt {23}\, \sqrt {-x^{2}}}{23}\right )}{\sqrt {-x^{2}}}\right )}{23}-\frac {\pi \sqrt {30}\, \sqrt {23}\, \left (-\frac {2 i \sqrt {\pi }}{\sqrt {-x^{2}}}+\frac {2 i \sqrt {\pi }\, \mathrm {erfc}\left (\frac {\sqrt {30}\, \sqrt {23}\, \sqrt {-x^{2}}}{23}\right )}{\sqrt {-x^{2}}}\right )}{23}-\frac {2 i \sqrt {690}\, \left (-\frac {i \left (-\gamma -2 \ln \relax (2)\right ) \sqrt {\pi }}{\sqrt {-x^{2}}}-\frac {i \ln \left (-\frac {30 x^{2}}{23}\right ) \sqrt {\pi }\, \mathrm {erfc}\left (\frac {\sqrt {30}\, \sqrt {23}\, \sqrt {-x^{2}}}{23}\right )}{\sqrt {-x^{2}}}+\frac {2 i \sqrt {\pi }\, \mathrm {erfc}\left (\frac {\sqrt {30}\, \sqrt {23}\, \sqrt {-x^{2}}}{23}\right )}{\sqrt {-x^{2}}}+\frac {\pi ^{\frac {3}{2}}}{\sqrt {-x^{2}}}-\frac {i \ln \left (30\right ) \sqrt {\pi }}{\sqrt {-x^{2}}}-\frac {i \ln \left (23\right ) \sqrt {\pi }\, \mathrm {erfc}\left (\frac {\sqrt {30}\, \sqrt {23}\, \sqrt {-x^{2}}}{23}\right )}{\sqrt {-x^{2}}}-\frac {2 i \ln \relax (x ) \sqrt {\pi }}{\sqrt {-x^{2}}}+\frac {i \ln \left (30\right ) \sqrt {\pi }\, \mathrm {erfc}\left (\frac {\sqrt {30}\, \sqrt {23}\, \sqrt {-x^{2}}}{23}\right )}{\sqrt {-x^{2}}}+\frac {i \sqrt {\pi }\, \ln \left (-\frac {30 x^{2}}{23}\right )}{\sqrt {-x^{2}}}-\frac {30 i \left (-\frac {23 \ln \left (-\frac {30 x^{2}}{23}\right ) \sqrt {\pi }\, \mathrm {erfc}\left (\frac {\sqrt {30}\, \sqrt {23}\, \sqrt {-x^{2}}}{23}\right )}{30}+\frac {23 \left (\gamma +3 \ln \relax (2)+\ln \relax (3)+\ln \relax (5)-\ln \left (23\right )+\ln \left (-x^{2}\right )\right ) \sqrt {\pi }}{30}\right )}{23 \sqrt {-x^{2}}}+\frac {2 i \ln \relax (x ) \sqrt {\pi }\, \mathrm {erfc}\left (\frac {\sqrt {30}\, \sqrt {23}\, \sqrt {-x^{2}}}{23}\right )}{\sqrt {-x^{2}}}-\frac {\pi ^{\frac {3}{2}} \mathrm {erfc}\left (\frac {\sqrt {30}\, \sqrt {23}\, \sqrt {-x^{2}}}{23}\right )}{\sqrt {-x^{2}}}+\frac {i \ln \left (23\right ) \sqrt {\pi }}{\sqrt {-x^{2}}}-\frac {2 i \sqrt {\pi }}{\sqrt {-x^{2}}}\right )}{23}\right ) x +\frac {-2 \ln \left (30\right ) {\mathrm e}^{\frac {30 x^{2}}{23}}+2 \ln \left (23\right ) {\mathrm e}^{\frac {30 x^{2}}{23}}-2 i \pi \,{\mathrm e}^{\frac {30 x^{2}}{23}}-\frac {2 i \sqrt {690}\, \left (\frac {i \sqrt {690}\, \ln \relax (x ) {\mathrm e}^{\frac {30 x^{2}}{23}}}{15}+\frac {i \sqrt {690}\, \ln \left (30\right ) {\mathrm e}^{\frac {30 x^{2}}{23}}}{30}-\frac {i \sqrt {690}\, \ln \left (23\right ) {\mathrm e}^{\frac {30 x^{2}}{23}}}{30}-\frac {\pi \sqrt {30}\, \sqrt {23}\, {\mathrm e}^{\frac {30 x^{2}}{23}}}{30}+\frac {i \sqrt {690}\, {\mathrm e}^{\frac {30 x^{2}}{23}}}{15}\right )}{23}}{x}-\frac {i \sqrt {690}\, \left (\frac {240 \ln \relax (2)}{23}-\frac {120}{23}\right ) \left (\frac {i \sqrt {690}\, {\mathrm e}^{\frac {30 x^{2}}{23}}}{15 x}-2 i \sqrt {\pi }\, \erfi \left (\frac {x \sqrt {30}\, \sqrt {23}}{23}\right )\right )}{60}\) | \(1181\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {2 \, \sqrt {\frac {30}{23}} \sqrt {-x^{2}} \Gamma \left (-\frac {1}{2}, -\frac {30}{23} \, x^{2}\right )}{x} + \frac {4 \, e^{\left (\frac {30}{23} \, x^{2}\right )} \log \relax (x)}{x} + \frac {4}{23} \, \int \frac {{\left (120 \, x^{2} \log \relax (2) - 46 \, \log \relax (2) - 23\right )} e^{\left (\frac {30}{23} \, x^{2}\right )}}{x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.44, size = 15, normalized size = 0.83 \begin {gather*} \frac {4\,\ln \left (4\,x\right )\,{\mathrm {e}}^{\frac {30\,x^2}{23}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 15, normalized size = 0.83 \begin {gather*} \frac {4 e^{\frac {30 x^{2}}{23}} \log {\left (4 x \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________