Optimal. Leaf size=20 \[ -\frac {\log \left (2 x^3\right )}{x \left (e^{5+x}+x\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.68, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-3 e^{5+x}-3 x+\left (2 x+e^{5+x} (1+x)\right ) \log \left (2 x^3\right )}{e^{10+2 x} x^2+2 e^{5+x} x^3+x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-3 \left (e^{5+x}+x\right )+\left (2 x+e^{5+x} (1+x)\right ) \log \left (2 x^3\right )}{x^2 \left (e^{5+x}+x\right )^2} \, dx\\ &=\int \left (-\frac {(-1+x) \log \left (2 x^3\right )}{x \left (e^{5+x}+x\right )^2}+\frac {-3+\log \left (2 x^3\right )+x \log \left (2 x^3\right )}{x^2 \left (e^{5+x}+x\right )}\right ) \, dx\\ &=-\int \frac {(-1+x) \log \left (2 x^3\right )}{x \left (e^{5+x}+x\right )^2} \, dx+\int \frac {-3+\log \left (2 x^3\right )+x \log \left (2 x^3\right )}{x^2 \left (e^{5+x}+x\right )} \, dx\\ &=-\left (\log \left (2 x^3\right ) \int \frac {1}{\left (e^{5+x}+x\right )^2} \, dx\right )+\log \left (2 x^3\right ) \int \frac {1}{x \left (e^{5+x}+x\right )^2} \, dx+\int \left (-\frac {3}{x^2 \left (e^{5+x}+x\right )}+\frac {\log \left (2 x^3\right )}{x^2 \left (e^{5+x}+x\right )}+\frac {\log \left (2 x^3\right )}{x \left (e^{5+x}+x\right )}\right ) \, dx+\int \frac {3 \left (\int \frac {1}{\left (e^{5+x}+x\right )^2} \, dx-\int \frac {1}{x \left (e^{5+x}+x\right )^2} \, dx\right )}{x} \, dx\\ &=-\left (3 \int \frac {1}{x^2 \left (e^{5+x}+x\right )} \, dx\right )+3 \int \frac {\int \frac {1}{\left (e^{5+x}+x\right )^2} \, dx-\int \frac {1}{x \left (e^{5+x}+x\right )^2} \, dx}{x} \, dx-\log \left (2 x^3\right ) \int \frac {1}{\left (e^{5+x}+x\right )^2} \, dx+\log \left (2 x^3\right ) \int \frac {1}{x \left (e^{5+x}+x\right )^2} \, dx+\int \frac {\log \left (2 x^3\right )}{x^2 \left (e^{5+x}+x\right )} \, dx+\int \frac {\log \left (2 x^3\right )}{x \left (e^{5+x}+x\right )} \, dx\\ &=-\left (3 \int \frac {1}{x^2 \left (e^{5+x}+x\right )} \, dx\right )+3 \int \left (\frac {\int \frac {1}{\left (e^{5+x}+x\right )^2} \, dx}{x}-\frac {\int \frac {1}{x \left (e^{5+x}+x\right )^2} \, dx}{x}\right ) \, dx-\log \left (2 x^3\right ) \int \frac {1}{\left (e^{5+x}+x\right )^2} \, dx+\log \left (2 x^3\right ) \int \frac {1}{x \left (e^{5+x}+x\right )^2} \, dx+\log \left (2 x^3\right ) \int \frac {1}{x^2 \left (e^{5+x}+x\right )} \, dx+\log \left (2 x^3\right ) \int \frac {1}{x \left (e^{5+x}+x\right )} \, dx-\int \frac {3 \int \frac {1}{x^2 \left (e^{5+x}+x\right )} \, dx}{x} \, dx-\int \frac {3 \int \frac {1}{e^{5+x} x+x^2} \, dx}{x} \, dx\\ &=-\left (3 \int \frac {1}{x^2 \left (e^{5+x}+x\right )} \, dx\right )+3 \int \frac {\int \frac {1}{\left (e^{5+x}+x\right )^2} \, dx}{x} \, dx-3 \int \frac {\int \frac {1}{x \left (e^{5+x}+x\right )^2} \, dx}{x} \, dx-3 \int \frac {\int \frac {1}{x^2 \left (e^{5+x}+x\right )} \, dx}{x} \, dx-3 \int \frac {\int \frac {1}{e^{5+x} x+x^2} \, dx}{x} \, dx-\log \left (2 x^3\right ) \int \frac {1}{\left (e^{5+x}+x\right )^2} \, dx+\log \left (2 x^3\right ) \int \frac {1}{x \left (e^{5+x}+x\right )^2} \, dx+\log \left (2 x^3\right ) \int \frac {1}{x^2 \left (e^{5+x}+x\right )} \, dx+\log \left (2 x^3\right ) \int \frac {1}{x \left (e^{5+x}+x\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.28, size = 20, normalized size = 1.00 \begin {gather*} -\frac {\log \left (2 x^3\right )}{x \left (e^{5+x}+x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.14, size = 20, normalized size = 1.00 \begin {gather*} -\frac {\log \left (2 \, x^{3}\right )}{x^{2} + x e^{\left (x + 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.40, size = 21, normalized size = 1.05 \begin {gather*} -\frac {\log \relax (2) + 3 \, \log \relax (x)}{x^{2} + x e^{\left (x + 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.13, size = 158, normalized size = 7.90
method | result | size |
risch | \(-\frac {3 \ln \relax (x )}{x \left (x +{\mathrm e}^{5+x}\right )}-\frac {-i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x \right )^{2}+2 i \pi \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i x \right )-i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )+i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{3}\right )^{2}-i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )^{2}-i \pi \mathrm {csgn}\left (i x^{3}\right )^{3}+2 \ln \relax (2)}{2 x \left (x +{\mathrm e}^{5+x}\right )}\) | \(158\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.88, size = 21, normalized size = 1.05 \begin {gather*} -\frac {\log \relax (2) + 3 \, \log \relax (x)}{x^{2} + x e^{\left (x + 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.42, size = 19, normalized size = 0.95 \begin {gather*} -\frac {\ln \left (2\,x^3\right )}{x\,\left (x+{\mathrm {e}}^{x+5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.25, size = 17, normalized size = 0.85 \begin {gather*} - \frac {\log {\left (2 x^{3} \right )}}{x^{2} + x e^{x + 5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________