Optimal. Leaf size=29 \[ \frac {x}{2}-\left (e+\frac {e^{e^{x (-x+\log (x))}}}{x}+x\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 3.98, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x^3-4 e x^3-4 x^4+e^{2 e^{-x^2+x \log (x)}} \left (4+e^{-x^2+x \log (x)} \left (-4 x+8 x^2-4 x \log (x)\right )\right )+e^{e^{-x^2+x \log (x)}} \left (4 e x+e^{-x^2+x \log (x)} \left (-4 x^3+8 x^4+e \left (-4 x^2+8 x^3\right )+\left (-4 e x^2-4 x^3\right ) \log (x)\right )\right )}{2 x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {(1-4 e) x^3-4 x^4+e^{2 e^{-x^2+x \log (x)}} \left (4+e^{-x^2+x \log (x)} \left (-4 x+8 x^2-4 x \log (x)\right )\right )+e^{e^{-x^2+x \log (x)}} \left (4 e x+e^{-x^2+x \log (x)} \left (-4 x^3+8 x^4+e \left (-4 x^2+8 x^3\right )+\left (-4 e x^2-4 x^3\right ) \log (x)\right )\right )}{2 x^3} \, dx\\ &=\frac {1}{2} \int \frac {(1-4 e) x^3-4 x^4+e^{2 e^{-x^2+x \log (x)}} \left (4+e^{-x^2+x \log (x)} \left (-4 x+8 x^2-4 x \log (x)\right )\right )+e^{e^{-x^2+x \log (x)}} \left (4 e x+e^{-x^2+x \log (x)} \left (-4 x^3+8 x^4+e \left (-4 x^2+8 x^3\right )+\left (-4 e x^2-4 x^3\right ) \log (x)\right )\right )}{x^3} \, dx\\ &=\frac {1}{2} \int \left (\frac {4 e^{2 e^{-x^2} x^x}+4 e^{1+e^{-x^2} x^x} x+(1-4 e) x^3-4 x^4}{x^3}+4 e^{-x^2+e^{-x^2} x^x} x^{-2+x} \left (e^{e^{-x^2} x^x}+e x+x^2\right ) (-1+2 x-\log (x))\right ) \, dx\\ &=\frac {1}{2} \int \frac {4 e^{2 e^{-x^2} x^x}+4 e^{1+e^{-x^2} x^x} x+(1-4 e) x^3-4 x^4}{x^3} \, dx+2 \int e^{-x^2+e^{-x^2} x^x} x^{-2+x} \left (e^{e^{-x^2} x^x}+e x+x^2\right ) (-1+2 x-\log (x)) \, dx\\ &=\frac {1}{2} \int \left (1-4 e+\frac {4 e^{2 e^{-x^2} x^x}}{x^3}+\frac {4 e^{1+e^{-x^2} x^x}}{x^2}-4 x\right ) \, dx+2 \int \left (e^{-x^2+2 e^{-x^2} x^x} x^{-2+x} (-1+2 x-\log (x))+e^{-x^2+e^{-x^2} x^x} x^{-1+x} (e+x) (-1+2 x-\log (x))\right ) \, dx\\ &=\frac {1}{2} (1-4 e) x-x^2+2 \int \frac {e^{2 e^{-x^2} x^x}}{x^3} \, dx+2 \int \frac {e^{1+e^{-x^2} x^x}}{x^2} \, dx+2 \int e^{-x^2+2 e^{-x^2} x^x} x^{-2+x} (-1+2 x-\log (x)) \, dx+2 \int e^{-x^2+e^{-x^2} x^x} x^{-1+x} (e+x) (-1+2 x-\log (x)) \, dx\\ &=\frac {1}{2} (1-4 e) x-x^2+2 \int \frac {e^{2 e^{-x^2} x^x}}{x^3} \, dx+2 \int \frac {e^{1+e^{-x^2} x^x}}{x^2} \, dx+2 \int \left (-e^{-x^2+2 e^{-x^2} x^x} x^{-2+x}+2 e^{-x^2+2 e^{-x^2} x^x} x^{-1+x}-e^{-x^2+2 e^{-x^2} x^x} x^{-2+x} \log (x)\right ) \, dx+2 \int \left (e^{-x^2+e^{-x^2} x^x} x^{-1+x} (e+x) (-1+2 x)-e^{-x^2+e^{-x^2} x^x} x^{-1+x} (e+x) \log (x)\right ) \, dx\\ &=\frac {1}{2} (1-4 e) x-x^2+2 \int \frac {e^{2 e^{-x^2} x^x}}{x^3} \, dx+2 \int \frac {e^{1+e^{-x^2} x^x}}{x^2} \, dx-2 \int e^{-x^2+2 e^{-x^2} x^x} x^{-2+x} \, dx+2 \int e^{-x^2+e^{-x^2} x^x} x^{-1+x} (e+x) (-1+2 x) \, dx-2 \int e^{-x^2+2 e^{-x^2} x^x} x^{-2+x} \log (x) \, dx-2 \int e^{-x^2+e^{-x^2} x^x} x^{-1+x} (e+x) \log (x) \, dx+4 \int e^{-x^2+2 e^{-x^2} x^x} x^{-1+x} \, dx\\ &=\frac {1}{2} (1-4 e) x-x^2+2 \int \frac {e^{2 e^{-x^2} x^x}}{x^3} \, dx+2 \int \frac {e^{1+e^{-x^2} x^x}}{x^2} \, dx-2 \int e^{-x^2+2 e^{-x^2} x^x} x^{-2+x} \, dx+2 \int \left (-e^{1-x^2+e^{-x^2} x^x} x^{-1+x}-(1-2 e) e^{-x^2+e^{-x^2} x^x} x^x+2 e^{-x^2+e^{-x^2} x^x} x^{1+x}\right ) \, dx+2 \int \frac {\int e^{-x^2+2 e^{-x^2} x^x} x^{-2+x} \, dx}{x} \, dx+2 \int \frac {\int e^{1-x^2+e^{-x^2} x^x} x^{-1+x} \, dx+\int e^{-x^2+e^{-x^2} x^x} x^x \, dx}{x} \, dx+4 \int e^{-x^2+2 e^{-x^2} x^x} x^{-1+x} \, dx-(2 \log (x)) \int e^{-x^2+2 e^{-x^2} x^x} x^{-2+x} \, dx-(2 \log (x)) \int e^{1-x^2+e^{-x^2} x^x} x^{-1+x} \, dx-(2 \log (x)) \int e^{-x^2+e^{-x^2} x^x} x^x \, dx\\ &=\frac {1}{2} (1-4 e) x-x^2+2 \int \frac {e^{2 e^{-x^2} x^x}}{x^3} \, dx+2 \int \frac {e^{1+e^{-x^2} x^x}}{x^2} \, dx-2 \int e^{-x^2+2 e^{-x^2} x^x} x^{-2+x} \, dx-2 \int e^{1-x^2+e^{-x^2} x^x} x^{-1+x} \, dx+2 \int \frac {\int e^{-x^2+2 e^{-x^2} x^x} x^{-2+x} \, dx}{x} \, dx+2 \int \left (\frac {\int e^{1-x^2+e^{-x^2} x^x} x^{-1+x} \, dx}{x}+\frac {\int e^{-x^2+e^{-x^2} x^x} x^x \, dx}{x}\right ) \, dx+4 \int e^{-x^2+2 e^{-x^2} x^x} x^{-1+x} \, dx+4 \int e^{-x^2+e^{-x^2} x^x} x^{1+x} \, dx-(2 (1-2 e)) \int e^{-x^2+e^{-x^2} x^x} x^x \, dx-(2 \log (x)) \int e^{-x^2+2 e^{-x^2} x^x} x^{-2+x} \, dx-(2 \log (x)) \int e^{1-x^2+e^{-x^2} x^x} x^{-1+x} \, dx-(2 \log (x)) \int e^{-x^2+e^{-x^2} x^x} x^x \, dx\\ &=\frac {1}{2} (1-4 e) x-x^2+2 \int \frac {e^{2 e^{-x^2} x^x}}{x^3} \, dx+2 \int \frac {e^{1+e^{-x^2} x^x}}{x^2} \, dx-2 \int e^{-x^2+2 e^{-x^2} x^x} x^{-2+x} \, dx-2 \int e^{1-x^2+e^{-x^2} x^x} x^{-1+x} \, dx+2 \int \frac {\int e^{-x^2+2 e^{-x^2} x^x} x^{-2+x} \, dx}{x} \, dx+2 \int \frac {\int e^{1-x^2+e^{-x^2} x^x} x^{-1+x} \, dx}{x} \, dx+2 \int \frac {\int e^{-x^2+e^{-x^2} x^x} x^x \, dx}{x} \, dx+4 \int e^{-x^2+2 e^{-x^2} x^x} x^{-1+x} \, dx+4 \int e^{-x^2+e^{-x^2} x^x} x^{1+x} \, dx-(2 (1-2 e)) \int e^{-x^2+e^{-x^2} x^x} x^x \, dx-(2 \log (x)) \int e^{-x^2+2 e^{-x^2} x^x} x^{-2+x} \, dx-(2 \log (x)) \int e^{1-x^2+e^{-x^2} x^x} x^{-1+x} \, dx-(2 \log (x)) \int e^{-x^2+e^{-x^2} x^x} x^x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 2.78, size = 69, normalized size = 2.38 \begin {gather*} \frac {1}{2} \left (-4 e^{e^{-x^2} x^x}-\frac {2 e^{2 e^{-x^2} x^x}}{x^2}-\frac {4 e^{1+e^{-x^2} x^x}}{x}+x-4 e x-2 x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.54, size = 61, normalized size = 2.10 \begin {gather*} -\frac {2 \, x^{4} + 4 \, x^{3} e - x^{3} + 4 \, {\left (x^{2} + x e\right )} e^{\left (e^{\left (-x^{2} + x \log \relax (x)\right )}\right )} + 2 \, e^{\left (2 \, e^{\left (-x^{2} + x \log \relax (x)\right )}\right )}}{2 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {4 \, x^{4} + 4 \, x^{3} e - x^{3} - 4 \, {\left ({\left (2 \, x^{2} - x \log \relax (x) - x\right )} e^{\left (-x^{2} + x \log \relax (x)\right )} + 1\right )} e^{\left (2 \, e^{\left (-x^{2} + x \log \relax (x)\right )}\right )} - 4 \, {\left (x e + {\left (2 \, x^{4} - x^{3} + {\left (2 \, x^{3} - x^{2}\right )} e - {\left (x^{3} + x^{2} e\right )} \log \relax (x)\right )} e^{\left (-x^{2} + x \log \relax (x)\right )}\right )} e^{\left (e^{\left (-x^{2} + x \log \relax (x)\right )}\right )}}{2 \, x^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 52, normalized size = 1.79
method | result | size |
risch | \(-2 x \,{\mathrm e}-x^{2}+\frac {x}{2}-\frac {{\mathrm e}^{2 x^{x} {\mathrm e}^{-x^{2}}}}{x^{2}}-\frac {2 \left (x +{\mathrm e}\right ) {\mathrm e}^{x^{x} {\mathrm e}^{-x^{2}}}}{x}\) | \(52\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.46, size = 56, normalized size = 1.93 \begin {gather*} -x^{2} - 2 \, x e + \frac {1}{2} \, x - \frac {2 \, {\left (x^{2} + x e\right )} e^{\left (e^{\left (-x^{2} + x \log \relax (x)\right )}\right )} + e^{\left (2 \, e^{\left (-x^{2} + x \log \relax (x)\right )}\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.39, size = 62, normalized size = 2.14 \begin {gather*} \frac {x}{2}-2\,{\mathrm {e}}^{x^x\,{\mathrm {e}}^{-x^2}}-2\,x\,\mathrm {e}-\frac {2\,{\mathrm {e}}^{x^x\,{\mathrm {e}}^{-x^2}+1}}{x}-x^2-\frac {{\mathrm {e}}^{2\,x^x\,{\mathrm {e}}^{-x^2}}}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.62, size = 58, normalized size = 2.00 \begin {gather*} - x^{2} + x \left (\frac {1}{2} - 2 e\right ) + \frac {- x e^{2 e^{- x^{2} + x \log {\relax (x )}}} + \left (- 2 x^{3} - 2 e x^{2}\right ) e^{e^{- x^{2} + x \log {\relax (x )}}}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________