Optimal. Leaf size=26 \[ 5 \log \left (-7-e^{5 e^{-\frac {2}{3-x}-x}}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 13.53, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{5 e^{-\frac {-2-3 x+x^2}{-3+x}}} \left (-275+150 x-25 x^2\right )}{\exp \left (5 e^{-\frac {-2-3 x+x^2}{-3+x}}+\frac {-2-3 x+x^2}{-3+x}\right ) \left (9-6 x+x^2\right )+e^{\frac {-2-3 x+x^2}{-3+x}} \left (63-42 x+7 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {25 e^{\frac {2+3 x-x^2}{-3+x}} \left (-11+6 x-x^2\right )}{\left (1+7 e^{-5 e^{\frac {2+3 x-x^2}{-3+x}}}\right ) (3-x)^2} \, dx\\ &=25 \int \frac {e^{\frac {2+3 x-x^2}{-3+x}} \left (-11+6 x-x^2\right )}{\left (1+7 e^{-5 e^{\frac {2+3 x-x^2}{-3+x}}}\right ) (3-x)^2} \, dx\\ &=25 \int \left (\frac {e^{\frac {2+3 x-x^2}{-3+x}} \left (-11+6 x-x^2\right )}{(-3+x)^2}+\frac {7 e^{\frac {2+3 x-x^2}{-3+x}} \left (11-6 x+x^2\right )}{\left (7+e^{5 e^{\frac {2}{-3+x}+\frac {3 x}{-3+x}-\frac {x^2}{-3+x}}}\right ) (-3+x)^2}\right ) \, dx\\ &=25 \int \frac {e^{\frac {2+3 x-x^2}{-3+x}} \left (-11+6 x-x^2\right )}{(-3+x)^2} \, dx+175 \int \frac {e^{\frac {2+3 x-x^2}{-3+x}} \left (11-6 x+x^2\right )}{\left (7+e^{5 e^{\frac {2}{-3+x}+\frac {3 x}{-3+x}-\frac {x^2}{-3+x}}}\right ) (-3+x)^2} \, dx\\ &=25 \int \left (-e^{\frac {2+3 x-x^2}{-3+x}}-\frac {2 e^{\frac {2+3 x-x^2}{-3+x}}}{(-3+x)^2}\right ) \, dx+175 \int \left (\frac {e^{\frac {2+3 x-x^2}{-3+x}}}{7+e^{5 e^{\frac {2}{-3+x}+\frac {3 x}{-3+x}-\frac {x^2}{-3+x}}}}+\frac {2 e^{\frac {2+3 x-x^2}{-3+x}}}{\left (7+e^{5 e^{\frac {2}{-3+x}+\frac {3 x}{-3+x}-\frac {x^2}{-3+x}}}\right ) (-3+x)^2}\right ) \, dx\\ &=-\left (25 \int e^{\frac {2+3 x-x^2}{-3+x}} \, dx\right )-50 \int \frac {e^{\frac {2+3 x-x^2}{-3+x}}}{(-3+x)^2} \, dx+175 \int \frac {e^{\frac {2+3 x-x^2}{-3+x}}}{7+e^{5 e^{\frac {2}{-3+x}+\frac {3 x}{-3+x}-\frac {x^2}{-3+x}}}} \, dx+350 \int \frac {e^{\frac {2+3 x-x^2}{-3+x}}}{\left (7+e^{5 e^{\frac {2}{-3+x}+\frac {3 x}{-3+x}-\frac {x^2}{-3+x}}}\right ) (-3+x)^2} \, dx\\ &=-\left (25 \int e^{\frac {2+3 x-x^2}{-3+x}} \, dx\right )-50 \int \frac {e^{\frac {2+3 x-x^2}{-3+x}}}{(-3+x)^2} \, dx+175 \int \frac {e^{\frac {2+3 x-x^2}{-3+x}}}{7+e^{5 e^{\frac {2+3 x-x^2}{-3+x}}}} \, dx+350 \int \frac {e^{\frac {2+3 x-x^2}{-3+x}}}{\left (7+e^{5 e^{\frac {2}{-3+x}+\frac {3 x}{-3+x}-\frac {x^2}{-3+x}}}\right ) (-3+x)^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 3.01, size = 22, normalized size = 0.85 \begin {gather*} 5 \log \left (7+e^{5 e^{\frac {2}{-3+x}-x}}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.74, size = 91, normalized size = 3.50 \begin {gather*} -\frac {5 \, {\left (x^{2} - {\left (x - 3\right )} \log \left (e^{\left (\frac {{\left ({\left (x^{2} - 3 \, x - 2\right )} e^{\left (\frac {x^{2} - 3 \, x - 2}{x - 3}\right )} + 5 \, x - 15\right )} e^{\left (-\frac {x^{2} - 3 \, x - 2}{x - 3}\right )}}{x - 3}\right )} + 7 \, e^{\left (\frac {x^{2} - 3 \, x - 2}{x - 3}\right )}\right ) - 3 \, x - 2\right )}}{x - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.50, size = 114, normalized size = 4.38 \begin {gather*} \frac {5 \, {\left (5 \, x^{2} e^{\left (-\frac {x^{2} - 3 \, x - 2}{x - 3}\right )} - 10 \, x e^{\left (-\frac {x^{2} - 3 \, x - 2}{x - 3}\right )} + x \log \left (e^{\left (5 \, e^{\left (-\frac {x^{2} - 3 \, x - 2}{x - 3}\right )}\right )} + 7\right ) - 25 \, e^{\left (-\frac {x^{2} - 3 \, x - 2}{x - 3}\right )} - 3 \, \log \left (e^{\left (5 \, e^{\left (-\frac {x^{2} - 3 \, x - 2}{x - 3}\right )}\right )} + 7\right )\right )}}{x - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 25, normalized size = 0.96
method | result | size |
risch | \(5 \ln \left ({\mathrm e}^{5 \,{\mathrm e}^{-\frac {x^{2}-3 x -2}{x -3}}}+7\right )\) | \(25\) |
norman | \(5 \ln \left ({\mathrm e}^{5 \,{\mathrm e}^{-\frac {x^{2}-3 x -2}{x -3}}}+7\right )\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.10, size = 20, normalized size = 0.77 \begin {gather*} 5 \, \log \left (e^{\left (5 \, e^{\left (-x + \frac {2}{x - 3}\right )}\right )} + 7\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.69, size = 36, normalized size = 1.38 \begin {gather*} \ln \left ({\left ({\mathrm {e}}^{5\,{\mathrm {e}}^{\frac {3\,x}{x-3}}\,{\mathrm {e}}^{-\frac {x^2}{x-3}}\,{\mathrm {e}}^{\frac {2}{x-3}}}+7\right )}^5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.55, size = 20, normalized size = 0.77 \begin {gather*} 5 \log {\left (e^{5 e^{- \frac {x^{2} - 3 x - 2}{x - 3}}} + 7 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________