Optimal. Leaf size=21 \[ \frac {1}{3}+\log \left (-3+\frac {1}{2} e^{2-(2+e) x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 22, normalized size of antiderivative = 1.05, number of steps used = 5, number of rules used = 5, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.192, Rules used = {12, 2282, 36, 29, 31} \begin {gather*} -e x-2 x+\log \left (e^2-6 e^{(2+e) x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 29
Rule 31
Rule 36
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\left (e^2 (2+e)\right ) \int \frac {1}{-e^2+6 e^{2 x+e x}} \, dx\\ &=e^2 \operatorname {Subst}\left (\int \frac {1}{x \left (-e^2+6 x\right )} \, dx,x,e^{2 x+e x}\right )\\ &=6 \operatorname {Subst}\left (\int \frac {1}{-e^2+6 x} \, dx,x,e^{2 x+e x}\right )-\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^{2 x+e x}\right )\\ &=-2 x-e x+\log \left (e^2-6 e^{(2+e) x}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 21, normalized size = 1.00 \begin {gather*} -((2+e) x)+\log \left (e^2-6 e^{(2+e) x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 26, normalized size = 1.24 \begin {gather*} -x e - 2 \, x + \log \left (-e^{2} + 6 \, e^{\left (x e + 2 \, x\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 33, normalized size = 1.57 \begin {gather*} -{\left (x {\left (e + 2\right )} e^{\left (-2\right )} - e^{\left (-2\right )} \log \left ({\left | -e^{2} + 6 \, e^{\left (x {\left (e + 2\right )}\right )} \right |}\right )\right )} e^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 23, normalized size = 1.10
method | result | size |
risch | \(-x \,{\mathrm e}-2 x +\ln \left (-\frac {{\mathrm e}^{2}}{6}+{\mathrm e}^{x \left ({\mathrm e}+2\right )}\right )\) | \(23\) |
norman | \(\left (-{\mathrm e}-2\right ) x +\ln \left (-6 \,{\mathrm e}^{x \,{\mathrm e}+2 x}+{\mathrm e}^{2}\right )\) | \(25\) |
derivativedivides | \({\mathrm e}^{2} \left ({\mathrm e}^{-2} \ln \left (6 \,{\mathrm e}^{x \,{\mathrm e}+2 x}-{\mathrm e}^{2}\right )-{\mathrm e}^{-2} \ln \left ({\mathrm e}^{x \,{\mathrm e}+2 x}\right )\right )\) | \(43\) |
default | \({\mathrm e}^{2} \left ({\mathrm e}^{-2} \ln \left (6 \,{\mathrm e}^{x \,{\mathrm e}+2 x}-{\mathrm e}^{2}\right )-{\mathrm e}^{-2} \ln \left ({\mathrm e}^{x \,{\mathrm e}+2 x}\right )\right )\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.39, size = 38, normalized size = 1.81 \begin {gather*} -{\left (x e^{\left (-2\right )} - \frac {e^{\left (-2\right )} \log \left (-e^{2} + 6 \, e^{\left (x {\left (e + 2\right )}\right )}\right )}{e + 2}\right )} {\left (e + 2\right )} e^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.16, size = 25, normalized size = 1.19 \begin {gather*} \ln \left (6\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{x\,\mathrm {e}}-{\mathrm {e}}^2\right )-x\,\left (\mathrm {e}+2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 24, normalized size = 1.14 \begin {gather*} x \left (- e - 2\right ) + \log {\left (e^{2 x + e x} - \frac {e^{2}}{6} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________