Optimal. Leaf size=21 \[ \log \left (x \left (1+e^x+\log \left (i \pi +\log \left (-2+e^8\right )\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 24, normalized size of antiderivative = 1.14, number of steps used = 2, number of rules used = 2, integrand size = 47, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.043, Rules used = {6, 6684} \begin {gather*} \log \left (e^x x+x \left (1+\log \left (\log \left (e^8-2\right )+i \pi \right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 6684
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1+e^x (1+x)+\log \left (i \pi +\log \left (-2+e^8\right )\right )}{e^x x+x \left (1+\log \left (i \pi +\log \left (-2+e^8\right )\right )\right )} \, dx\\ &=\log \left (e^x x+x \left (1+\log \left (i \pi +\log \left (-2+e^8\right )\right )\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 22, normalized size = 1.05 \begin {gather*} \log (x)+\log \left (1+e^x+\log \left (i \pi +\log \left (-2+e^8\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 16, normalized size = 0.76 \begin {gather*} \log \relax (x) + \log \left (e^{x} + \log \left (\log \left (-e^{8} + 2\right )\right ) + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 16, normalized size = 0.76 \begin {gather*} \log \relax (x) + \log \left (e^{x} + \log \left (\log \left (-e^{8} + 2\right )\right ) + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 17, normalized size = 0.81
method | result | size |
risch | \(\ln \relax (x )+\ln \left (\ln \left (\ln \left (-{\mathrm e}^{8}+2\right )\right )+{\mathrm e}^{x}+1\right )\) | \(17\) |
norman | \(\ln \relax (x )+\ln \left (\ln \left (\ln \left (-{\mathrm e}^{8}+2\right )\right )+{\mathrm e}^{x}+1\right )\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.99, size = 16, normalized size = 0.76 \begin {gather*} \log \relax (x) + \log \left (e^{x} + \log \left (\log \left (-e^{8} + 2\right )\right ) + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.09, size = 16, normalized size = 0.76 \begin {gather*} \ln \left ({\mathrm {e}}^x+\ln \left (\ln \left (2-{\mathrm {e}}^8\right )\right )+1\right )+\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 20, normalized size = 0.95 \begin {gather*} \log {\relax (x )} + \log {\left (e^{x} + 1 + \log {\left (\log {\left (-2 + e^{8} \right )} + i \pi \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________