Optimal. Leaf size=37 \[ x-e^{-e^4+x} x-\log \left (\frac {-2+x}{\frac {1}{3}+5 e^{-x} x^2}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.06, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-60 x+15 x^2+e^{-e^4+x} \left (30 x^2+15 x^3-15 x^4\right )+e^x \left (-3+x+e^{-e^4+x} \left (2+x-x^2\right )\right )}{e^x (-2+x)-30 x^2+15 x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {60 x-15 x^2-e^{-e^4+x} \left (30 x^2+15 x^3-15 x^4\right )-e^x \left (-3+x+e^{-e^4+x} \left (2+x-x^2\right )\right )}{(2-x) \left (e^x+15 x^2\right )} \, dx\\ &=\int \left (\frac {-3+x}{-2+x}-e^{-e^4+x} (1+x)-\frac {15 (-2+x) x}{e^x+15 x^2}\right ) \, dx\\ &=-\left (15 \int \frac {(-2+x) x}{e^x+15 x^2} \, dx\right )+\int \frac {-3+x}{-2+x} \, dx-\int e^{-e^4+x} (1+x) \, dx\\ &=-e^{-e^4+x} (1+x)-15 \int \left (-\frac {2 x}{e^x+15 x^2}+\frac {x^2}{e^x+15 x^2}\right ) \, dx+\int e^{-e^4+x} \, dx+\int \left (1+\frac {1}{2-x}\right ) \, dx\\ &=e^{-e^4+x}+x-e^{-e^4+x} (1+x)-\log (2-x)-15 \int \frac {x^2}{e^x+15 x^2} \, dx+30 \int \frac {x}{e^x+15 x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.20, size = 46, normalized size = 1.24 \begin {gather*} e^{-e^4} \left (-e^x x-e^{e^4} \log \left (1-\frac {x}{2}\right )+e^{e^4} \log \left (e^x+15 x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 34, normalized size = 0.92 \begin {gather*} -{\left (x e^{x} - e^{\left (e^{4}\right )} \log \left (15 \, x^{2} + e^{x}\right ) + e^{\left (e^{4}\right )} \log \left (x - 2\right )\right )} e^{\left (-e^{4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 34, normalized size = 0.92 \begin {gather*} -{\left (x e^{x} - e^{\left (e^{4}\right )} \log \left (15 \, x^{2} + e^{x}\right ) + e^{\left (e^{4}\right )} \log \left (x - 2\right )\right )} e^{\left (-e^{4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 27, normalized size = 0.73
method | result | size |
norman | \(-{\mathrm e}^{x} {\mathrm e}^{-{\mathrm e}^{4}} x -\ln \left (x -2\right )+\ln \left (15 x^{2}+{\mathrm e}^{x}\right )\) | \(27\) |
risch | \(-{\mathrm e}^{x -{\mathrm e}^{4}} x -\ln \left (x -2\right )+\ln \left (15 x^{2}+{\mathrm e}^{x}\right )\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.61, size = 26, normalized size = 0.70 \begin {gather*} -x e^{\left (x - e^{4}\right )} + \log \left (15 \, x^{2} + e^{x}\right ) - \log \left (x - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.18, size = 26, normalized size = 0.70 \begin {gather*} \ln \left ({\mathrm {e}}^x+15\,x^2\right )-\ln \left (x-2\right )-x\,{\mathrm {e}}^{-{\mathrm {e}}^4}\,{\mathrm {e}}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 24, normalized size = 0.65 \begin {gather*} - \frac {x e^{x}}{e^{e^{4}}} - \log {\left (x - 2 \right )} + \log {\left (15 x^{2} + e^{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________