Optimal. Leaf size=30 \[ x \left (-e^{-4-\frac {1}{e^2}} x+\frac {x \log (2)}{\left (e^x+\frac {x}{5}\right )^2}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.41, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-250 e^{3 x} x-150 e^{2 x} x^2-2 x^4+e^x \left (-30 x^3+e^{\frac {1+4 e^2}{e^2}} \left (250 x-250 x^2\right ) \log (2)\right )}{125 e^{\frac {1+4 e^2}{e^2}+3 x}+75 e^{\frac {1+4 e^2}{e^2}+2 x} x+15 e^{\frac {1+4 e^2}{e^2}+x} x^2+e^{\frac {1+4 e^2}{e^2}} x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^{-4-\frac {1}{e^2}} x \left (-125 e^{3 x}-75 e^{2 x} x-15 e^x x^2-x^3-125 e^{4+\frac {1}{e^2}+x} (-1+x) \log (2)\right )}{\left (5 e^x+x\right )^3} \, dx\\ &=\left (2 e^{-4-\frac {1}{e^2}}\right ) \int \frac {x \left (-125 e^{3 x}-75 e^{2 x} x-15 e^x x^2-x^3-125 e^{4+\frac {1}{e^2}+x} (-1+x) \log (2)\right )}{\left (5 e^x+x\right )^3} \, dx\\ &=\left (2 e^{-4-\frac {1}{e^2}}\right ) \int \left (-x+\frac {25 e^{4+\frac {1}{e^2}} (-1+x) x^2 \log (2)}{\left (5 e^x+x\right )^3}-\frac {25 e^{4+\frac {1}{e^2}} (-1+x) x \log (2)}{\left (5 e^x+x\right )^2}\right ) \, dx\\ &=-e^{-4-\frac {1}{e^2}} x^2+(50 \log (2)) \int \frac {(-1+x) x^2}{\left (5 e^x+x\right )^3} \, dx-(50 \log (2)) \int \frac {(-1+x) x}{\left (5 e^x+x\right )^2} \, dx\\ &=-e^{-4-\frac {1}{e^2}} x^2+(50 \log (2)) \int \left (-\frac {x^2}{\left (5 e^x+x\right )^3}+\frac {x^3}{\left (5 e^x+x\right )^3}\right ) \, dx-(50 \log (2)) \int \left (-\frac {x}{\left (5 e^x+x\right )^2}+\frac {x^2}{\left (5 e^x+x\right )^2}\right ) \, dx\\ &=-e^{-4-\frac {1}{e^2}} x^2-(50 \log (2)) \int \frac {x^2}{\left (5 e^x+x\right )^3} \, dx+(50 \log (2)) \int \frac {x^3}{\left (5 e^x+x\right )^3} \, dx+(50 \log (2)) \int \frac {x}{\left (5 e^x+x\right )^2} \, dx-(50 \log (2)) \int \frac {x^2}{\left (5 e^x+x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 36, normalized size = 1.20 \begin {gather*} -e^{-4-\frac {1}{e^2}} x^2 \left (1-\frac {25 e^{4+\frac {1}{e^2}} \log (2)}{\left (5 e^x+x\right )^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.72, size = 150, normalized size = 5.00 \begin {gather*} -\frac {x^{4} e^{\left (2 \, {\left (4 \, e^{2} + 1\right )} e^{\left (-2\right )}\right )} + 10 \, x^{3} e^{\left ({\left ({\left (x + 4\right )} e^{2} + 1\right )} e^{\left (-2\right )} + {\left (4 \, e^{2} + 1\right )} e^{\left (-2\right )}\right )} - 25 \, x^{2} e^{\left (3 \, {\left (4 \, e^{2} + 1\right )} e^{\left (-2\right )}\right )} \log \relax (2) + 25 \, x^{2} e^{\left (2 \, {\left ({\left (x + 4\right )} e^{2} + 1\right )} e^{\left (-2\right )}\right )}}{x^{2} e^{\left (3 \, {\left (4 \, e^{2} + 1\right )} e^{\left (-2\right )}\right )} + 10 \, x e^{\left ({\left ({\left (x + 4\right )} e^{2} + 1\right )} e^{\left (-2\right )} + 2 \, {\left (4 \, e^{2} + 1\right )} e^{\left (-2\right )}\right )} + 25 \, e^{\left (2 \, {\left ({\left (x + 4\right )} e^{2} + 1\right )} e^{\left (-2\right )} + {\left (4 \, e^{2} + 1\right )} e^{\left (-2\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.30, size = 87, normalized size = 2.90 \begin {gather*} -\frac {x^{4} + 10 \, x^{3} e^{x} - 25 \, x^{2} e^{\left ({\left (4 \, e^{2} + 1\right )} e^{\left (-2\right )}\right )} \log \relax (2) + 25 \, x^{2} e^{\left (2 \, x\right )}}{x^{2} e^{\left ({\left (4 \, e^{2} + 1\right )} e^{\left (-2\right )}\right )} + 10 \, x e^{\left ({\left (4 \, e^{2} + 1\right )} e^{\left (-2\right )} + x\right )} + 25 \, e^{\left ({\left (4 \, e^{2} + 1\right )} e^{\left (-2\right )} + 2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 29, normalized size = 0.97
method | result | size |
risch | \(-x^{2} {\mathrm e}^{-4-{\mathrm e}^{-2}}+\frac {25 \ln \relax (2) x^{2}}{\left (5 \,{\mathrm e}^{x}+x \right )^{2}}\) | \(29\) |
norman | \(\frac {-625 \ln \relax (2) {\mathrm e}^{2 x}-250 x \ln \relax (2) {\mathrm e}^{x}-{\mathrm e}^{-{\mathrm e}^{-2}} {\mathrm e}^{-4} x^{4}-25 \,{\mathrm e}^{-{\mathrm e}^{-2}} {\mathrm e}^{-4} x^{2} {\mathrm e}^{2 x}-10 \,{\mathrm e}^{-{\mathrm e}^{-2}} {\mathrm e}^{-4} x^{3} {\mathrm e}^{x}}{\left (5 \,{\mathrm e}^{x}+x \right )^{2}}\) | \(80\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.97, size = 65, normalized size = 2.17 \begin {gather*} -\frac {x^{4} + 10 \, x^{3} e^{x} - 25 \, x^{2} e^{\left (e^{\left (-2\right )} + 4\right )} \log \relax (2) + 25 \, x^{2} e^{\left (2 \, x\right )}}{x^{2} e^{\left (e^{\left (-2\right )} + 4\right )} + 10 \, x e^{\left (x + e^{\left (-2\right )} + 4\right )} + 25 \, e^{\left (2 \, x + e^{\left (-2\right )} + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.33, size = 65, normalized size = 2.17 \begin {gather*} -\frac {x^2\,\left (25\,{\mathrm {e}}^{2\,x}-25\,{\mathrm {e}}^{{\mathrm {e}}^{-2}\,\left (4\,{\mathrm {e}}^2+1\right )}\,\ln \relax (2)+10\,x\,{\mathrm {e}}^x+x^2\right )}{25\,{\mathrm {e}}^{2\,x+{\mathrm {e}}^{-2}+4}+x^2\,{\mathrm {e}}^{{\mathrm {e}}^{-2}+4}+10\,x\,{\mathrm {e}}^{x+{\mathrm {e}}^{-2}+4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 39, normalized size = 1.30 \begin {gather*} - \frac {x^{2}}{e^{4} e^{e^{-2}}} + \frac {5 x^{2} \log {\relax (2 )}}{\frac {x^{2}}{5} + 2 x e^{x} + 5 e^{2 x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________