Optimal. Leaf size=34 \[ -4+\frac {e^5 x \left (\frac {\frac {x}{3}+x^3}{x}-x \log (5)\right )}{\log (5-x)} \]
________________________________________________________________________________________
Rubi [C] time = 0.99, antiderivative size = 214, normalized size of antiderivative = 6.29, number of steps used = 50, number of rules used = 15, integrand size = 80, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.188, Rules used = {6688, 12, 6742, 2418, 2400, 2399, 2389, 2298, 2390, 2309, 2178, 2297, 2302, 30, 2417} \begin {gather*} -20 e^5 \text {Ei}(2 \log (5-x))+2 e^5 (15-\log (5)) \text {Ei}(2 \log (5-x))-2 e^5 (5-\log (5)) \text {Ei}(2 \log (5-x))+25 e^5 \text {li}(5-x)+5 e^5 (5-\log (5)) \text {li}(5-x)-\frac {2}{3} e^5 (113-15 \log (5)) \text {li}(5-x)+\frac {1}{3} e^5 (76-15 \log (5)) \text {li}(5-x)-\frac {e^5 (5-x) x^2}{\log (5-x)}-\frac {e^5 (5-x) x (5-\log (5))}{\log (5-x)}-\frac {e^5 (5-x) (76-15 \log (5))}{3 \log (5-x)}+\frac {5 e^5 (76-15 \log (5))}{3 \log (5-x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 30
Rule 2178
Rule 2297
Rule 2298
Rule 2302
Rule 2309
Rule 2389
Rule 2390
Rule 2399
Rule 2400
Rule 2417
Rule 2418
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^5 \left (-x \left (-1-3 x^2+3 x \log (5)\right )-(-5+x) \left (1+9 x^2-6 x \log (5)\right ) \log (5-x)\right )}{3 (5-x) \log ^2(5-x)} \, dx\\ &=\frac {1}{3} e^5 \int \frac {-x \left (-1-3 x^2+3 x \log (5)\right )-(-5+x) \left (1+9 x^2-6 x \log (5)\right ) \log (5-x)}{(5-x) \log ^2(5-x)} \, dx\\ &=\frac {1}{3} e^5 \int \left (-\frac {x \left (1+3 x^2-3 x \log (5)\right )}{(-5+x) \log ^2(5-x)}+\frac {1+9 x^2-6 x \log (5)}{\log (5-x)}\right ) \, dx\\ &=-\left (\frac {1}{3} e^5 \int \frac {x \left (1+3 x^2-3 x \log (5)\right )}{(-5+x) \log ^2(5-x)} \, dx\right )+\frac {1}{3} e^5 \int \frac {1+9 x^2-6 x \log (5)}{\log (5-x)} \, dx\\ &=-\left (\frac {1}{3} e^5 \int \left (\frac {3 x^2}{\log ^2(5-x)}+\frac {76 \left (1-\frac {15 \log (5)}{76}\right )}{\log ^2(5-x)}-\frac {3 x (-5+\log (5))}{\log ^2(5-x)}-\frac {5 (-76+15 \log (5))}{(-5+x) \log ^2(5-x)}\right ) \, dx\right )+\frac {1}{3} e^5 \int \left (\frac {9 (5-x)^2}{\log (5-x)}+\frac {6 (5-x) (-15+\log (5))}{\log (5-x)}-\frac {2 (-113+15 \log (5))}{\log (5-x)}\right ) \, dx\\ &=-\left (e^5 \int \frac {x^2}{\log ^2(5-x)} \, dx\right )+\left (3 e^5\right ) \int \frac {(5-x)^2}{\log (5-x)} \, dx-\frac {1}{3} \left (e^5 (76-15 \log (5))\right ) \int \frac {1}{\log ^2(5-x)} \, dx-\frac {1}{3} \left (5 e^5 (76-15 \log (5))\right ) \int \frac {1}{(-5+x) \log ^2(5-x)} \, dx+\frac {1}{3} \left (2 e^5 (113-15 \log (5))\right ) \int \frac {1}{\log (5-x)} \, dx-\left (e^5 (5-\log (5))\right ) \int \frac {x}{\log ^2(5-x)} \, dx-\left (2 e^5 (15-\log (5))\right ) \int \frac {5-x}{\log (5-x)} \, dx\\ &=-\frac {e^5 (5-x) x^2}{\log (5-x)}-\frac {e^5 (5-x) x (5-\log (5))}{\log (5-x)}-\left (3 e^5\right ) \int \frac {x^2}{\log (5-x)} \, dx-\left (3 e^5\right ) \operatorname {Subst}\left (\int \frac {x^2}{\log (x)} \, dx,x,5-x\right )+\left (10 e^5\right ) \int \frac {x}{\log (5-x)} \, dx+\frac {1}{3} \left (e^5 (76-15 \log (5))\right ) \operatorname {Subst}\left (\int \frac {1}{\log ^2(x)} \, dx,x,5-x\right )-\frac {1}{3} \left (5 e^5 (76-15 \log (5))\right ) \operatorname {Subst}\left (\int \frac {1}{x \log ^2(x)} \, dx,x,5-x\right )-\frac {1}{3} \left (2 e^5 (113-15 \log (5))\right ) \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,5-x\right )-\left (2 e^5 (5-\log (5))\right ) \int \frac {x}{\log (5-x)} \, dx+\left (5 e^5 (5-\log (5))\right ) \int \frac {1}{\log (5-x)} \, dx+\left (2 e^5 (15-\log (5))\right ) \operatorname {Subst}\left (\int \frac {x}{\log (x)} \, dx,x,5-x\right )\\ &=-\frac {e^5 (5-x) x^2}{\log (5-x)}-\frac {e^5 (5-x) (76-15 \log (5))}{3 \log (5-x)}-\frac {e^5 (5-x) x (5-\log (5))}{\log (5-x)}-\frac {2}{3} e^5 (113-15 \log (5)) \text {li}(5-x)-\left (3 e^5\right ) \int \left (\frac {25}{\log (5-x)}-\frac {10 (5-x)}{\log (5-x)}+\frac {(5-x)^2}{\log (5-x)}\right ) \, dx-\left (3 e^5\right ) \operatorname {Subst}\left (\int \frac {e^{3 x}}{x} \, dx,x,\log (5-x)\right )+\left (10 e^5\right ) \int \left (\frac {5}{\log (5-x)}-\frac {5-x}{\log (5-x)}\right ) \, dx+\frac {1}{3} \left (e^5 (76-15 \log (5))\right ) \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,5-x\right )-\frac {1}{3} \left (5 e^5 (76-15 \log (5))\right ) \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log (5-x)\right )-\left (2 e^5 (5-\log (5))\right ) \int \left (\frac {5}{\log (5-x)}-\frac {5-x}{\log (5-x)}\right ) \, dx-\left (5 e^5 (5-\log (5))\right ) \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,5-x\right )+\left (2 e^5 (15-\log (5))\right ) \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (5-x)\right )\\ &=-3 e^5 \text {Ei}(3 \log (5-x))+2 e^5 \text {Ei}(2 \log (5-x)) (15-\log (5))-\frac {e^5 (5-x) x^2}{\log (5-x)}+\frac {5 e^5 (76-15 \log (5))}{3 \log (5-x)}-\frac {e^5 (5-x) (76-15 \log (5))}{3 \log (5-x)}-\frac {e^5 (5-x) x (5-\log (5))}{\log (5-x)}+\frac {1}{3} e^5 (76-15 \log (5)) \text {li}(5-x)-\frac {2}{3} e^5 (113-15 \log (5)) \text {li}(5-x)-5 e^5 (5-\log (5)) \text {li}(5-x)-\left (3 e^5\right ) \int \frac {(5-x)^2}{\log (5-x)} \, dx-\left (10 e^5\right ) \int \frac {5-x}{\log (5-x)} \, dx+\left (30 e^5\right ) \int \frac {5-x}{\log (5-x)} \, dx+\left (50 e^5\right ) \int \frac {1}{\log (5-x)} \, dx-\left (75 e^5\right ) \int \frac {1}{\log (5-x)} \, dx+\left (2 e^5 (5-\log (5))\right ) \int \frac {5-x}{\log (5-x)} \, dx-\left (10 e^5 (5-\log (5))\right ) \int \frac {1}{\log (5-x)} \, dx\\ &=-3 e^5 \text {Ei}(3 \log (5-x))+2 e^5 \text {Ei}(2 \log (5-x)) (15-\log (5))-\frac {e^5 (5-x) x^2}{\log (5-x)}+\frac {5 e^5 (76-15 \log (5))}{3 \log (5-x)}-\frac {e^5 (5-x) (76-15 \log (5))}{3 \log (5-x)}-\frac {e^5 (5-x) x (5-\log (5))}{\log (5-x)}+\frac {1}{3} e^5 (76-15 \log (5)) \text {li}(5-x)-\frac {2}{3} e^5 (113-15 \log (5)) \text {li}(5-x)-5 e^5 (5-\log (5)) \text {li}(5-x)+\left (3 e^5\right ) \operatorname {Subst}\left (\int \frac {x^2}{\log (x)} \, dx,x,5-x\right )+\left (10 e^5\right ) \operatorname {Subst}\left (\int \frac {x}{\log (x)} \, dx,x,5-x\right )-\left (30 e^5\right ) \operatorname {Subst}\left (\int \frac {x}{\log (x)} \, dx,x,5-x\right )-\left (50 e^5\right ) \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,5-x\right )+\left (75 e^5\right ) \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,5-x\right )-\left (2 e^5 (5-\log (5))\right ) \operatorname {Subst}\left (\int \frac {x}{\log (x)} \, dx,x,5-x\right )+\left (10 e^5 (5-\log (5))\right ) \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,5-x\right )\\ &=-3 e^5 \text {Ei}(3 \log (5-x))+2 e^5 \text {Ei}(2 \log (5-x)) (15-\log (5))-\frac {e^5 (5-x) x^2}{\log (5-x)}+\frac {5 e^5 (76-15 \log (5))}{3 \log (5-x)}-\frac {e^5 (5-x) (76-15 \log (5))}{3 \log (5-x)}-\frac {e^5 (5-x) x (5-\log (5))}{\log (5-x)}+25 e^5 \text {li}(5-x)+\frac {1}{3} e^5 (76-15 \log (5)) \text {li}(5-x)-\frac {2}{3} e^5 (113-15 \log (5)) \text {li}(5-x)+5 e^5 (5-\log (5)) \text {li}(5-x)+\left (3 e^5\right ) \operatorname {Subst}\left (\int \frac {e^{3 x}}{x} \, dx,x,\log (5-x)\right )+\left (10 e^5\right ) \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (5-x)\right )-\left (30 e^5\right ) \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (5-x)\right )-\left (2 e^5 (5-\log (5))\right ) \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (5-x)\right )\\ &=-20 e^5 \text {Ei}(2 \log (5-x))-2 e^5 \text {Ei}(2 \log (5-x)) (5-\log (5))+2 e^5 \text {Ei}(2 \log (5-x)) (15-\log (5))-\frac {e^5 (5-x) x^2}{\log (5-x)}+\frac {5 e^5 (76-15 \log (5))}{3 \log (5-x)}-\frac {e^5 (5-x) (76-15 \log (5))}{3 \log (5-x)}-\frac {e^5 (5-x) x (5-\log (5))}{\log (5-x)}+25 e^5 \text {li}(5-x)+\frac {1}{3} e^5 (76-15 \log (5)) \text {li}(5-x)-\frac {2}{3} e^5 (113-15 \log (5)) \text {li}(5-x)+5 e^5 (5-\log (5)) \text {li}(5-x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 28, normalized size = 0.82 \begin {gather*} \frac {e^5 x \left (1+3 x^2-3 x \log (5)\right )}{3 \log (5-x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 31, normalized size = 0.91 \begin {gather*} -\frac {3 \, x^{2} e^{5} \log \relax (5) - {\left (3 \, x^{3} + x\right )} e^{5}}{3 \, \log \left (-x + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.26, size = 31, normalized size = 0.91 \begin {gather*} \frac {3 \, x^{3} e^{5} - 3 \, x^{2} e^{5} \log \relax (5) + x e^{5}}{3 \, \log \left (-x + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.35, size = 26, normalized size = 0.76
method | result | size |
risch | \(-\frac {x \,{\mathrm e}^{5} \left (3 x \ln \relax (5)-3 x^{2}-1\right )}{3 \ln \left (5-x \right )}\) | \(26\) |
norman | \(\frac {x^{3} {\mathrm e}^{5}+\frac {x \,{\mathrm e}^{5}}{3}-x^{2} {\mathrm e}^{5} \ln \relax (5)}{\ln \left (5-x \right )}\) | \(31\) |
derivativedivides | \(2 \,{\mathrm e}^{5} \ln \relax (5) \expIntegralEi \left (1, -2 \ln \left (5-x \right )\right )+3 \,{\mathrm e}^{5} \expIntegralEi \left (1, -3 \ln \left (5-x \right )\right )-10 \,{\mathrm e}^{5} \ln \relax (5) \expIntegralEi \left (1, -\ln \left (5-x \right )\right )+{\mathrm e}^{5} \ln \relax (5) \left (-\frac {\left (5-x \right )^{2}}{\ln \left (5-x \right )}-2 \expIntegralEi \left (1, -2 \ln \left (5-x \right )\right )\right )-30 \,{\mathrm e}^{5} \expIntegralEi \left (1, -2 \ln \left (5-x \right )\right )+{\mathrm e}^{5} \left (-\frac {\left (5-x \right )^{3}}{\ln \left (5-x \right )}-3 \expIntegralEi \left (1, -3 \ln \left (5-x \right )\right )\right )-10 \,{\mathrm e}^{5} \ln \relax (5) \left (-\frac {5-x}{\ln \left (5-x \right )}-\expIntegralEi \left (1, -\ln \left (5-x \right )\right )\right )+\frac {226 \,{\mathrm e}^{5} \expIntegralEi \left (1, -\ln \left (5-x \right )\right )}{3}-15 \,{\mathrm e}^{5} \left (-\frac {\left (5-x \right )^{2}}{\ln \left (5-x \right )}-2 \expIntegralEi \left (1, -2 \ln \left (5-x \right )\right )\right )-\frac {25 \,{\mathrm e}^{5} \ln \relax (5)}{\ln \left (5-x \right )}+\frac {226 \,{\mathrm e}^{5} \left (-\frac {5-x}{\ln \left (5-x \right )}-\expIntegralEi \left (1, -\ln \left (5-x \right )\right )\right )}{3}+\frac {380 \,{\mathrm e}^{5}}{3 \ln \left (5-x \right )}\) | \(270\) |
default | \(2 \,{\mathrm e}^{5} \ln \relax (5) \expIntegralEi \left (1, -2 \ln \left (5-x \right )\right )+3 \,{\mathrm e}^{5} \expIntegralEi \left (1, -3 \ln \left (5-x \right )\right )-10 \,{\mathrm e}^{5} \ln \relax (5) \expIntegralEi \left (1, -\ln \left (5-x \right )\right )+{\mathrm e}^{5} \ln \relax (5) \left (-\frac {\left (5-x \right )^{2}}{\ln \left (5-x \right )}-2 \expIntegralEi \left (1, -2 \ln \left (5-x \right )\right )\right )-30 \,{\mathrm e}^{5} \expIntegralEi \left (1, -2 \ln \left (5-x \right )\right )+{\mathrm e}^{5} \left (-\frac {\left (5-x \right )^{3}}{\ln \left (5-x \right )}-3 \expIntegralEi \left (1, -3 \ln \left (5-x \right )\right )\right )-10 \,{\mathrm e}^{5} \ln \relax (5) \left (-\frac {5-x}{\ln \left (5-x \right )}-\expIntegralEi \left (1, -\ln \left (5-x \right )\right )\right )+\frac {226 \,{\mathrm e}^{5} \expIntegralEi \left (1, -\ln \left (5-x \right )\right )}{3}-15 \,{\mathrm e}^{5} \left (-\frac {\left (5-x \right )^{2}}{\ln \left (5-x \right )}-2 \expIntegralEi \left (1, -2 \ln \left (5-x \right )\right )\right )-\frac {25 \,{\mathrm e}^{5} \ln \relax (5)}{\ln \left (5-x \right )}+\frac {226 \,{\mathrm e}^{5} \left (-\frac {5-x}{\ln \left (5-x \right )}-\expIntegralEi \left (1, -\ln \left (5-x \right )\right )\right )}{3}+\frac {380 \,{\mathrm e}^{5}}{3 \ln \left (5-x \right )}\) | \(270\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.65, size = 36, normalized size = 1.06 \begin {gather*} \frac {3 \, x^{3} e^{5} - 3 \, x^{2} e^{5} \log \relax (5) + x e^{5}}{3 \, \log \left (-x + 5\right )} + \frac {5}{3} \, e^{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.30, size = 82, normalized size = 2.41 \begin {gather*} \frac {3\,{\mathrm {e}}^5\,x^5-3\,{\mathrm {e}}^5\,\left (\ln \relax (5)+10\right )\,x^4+2\,{\mathrm {e}}^5\,\left (15\,\ln \relax (5)+38\right )\,x^3-5\,{\mathrm {e}}^5\,\left (15\,\ln \relax (5)+2\right )\,x^2+25\,{\mathrm {e}}^5\,x}{75\,\ln \left (5-x\right )-30\,x\,\ln \left (5-x\right )+3\,x^2\,\ln \left (5-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 31, normalized size = 0.91 \begin {gather*} \frac {3 x^{3} e^{5} - 3 x^{2} e^{5} \log {\relax (5 )} + x e^{5}}{3 \log {\left (5 - x \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________