Optimal. Leaf size=19 \[ e^{\frac {2+x}{\left (x-2 x^3\right ) \log (x)}} \]
________________________________________________________________________________________
Rubi [F] time = 10.94, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {-2-x}{\left (-x+2 x^3\right ) \log (x)}} \left (-2-x+4 x^2+2 x^3+\left (-2+12 x^2+4 x^3\right ) \log (x)\right )}{\left (x^2-4 x^4+4 x^6\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {-2-x}{\left (-x+2 x^3\right ) \log (x)}} \left (-2-x+4 x^2+2 x^3+\left (-2+12 x^2+4 x^3\right ) \log (x)\right )}{x^2 \left (1-4 x^2+4 x^4\right ) \log ^2(x)} \, dx\\ &=4 \int \frac {e^{\frac {-2-x}{\left (-x+2 x^3\right ) \log (x)}} \left (-2-x+4 x^2+2 x^3+\left (-2+12 x^2+4 x^3\right ) \log (x)\right )}{x^2 \left (-2+4 x^2\right )^2 \log ^2(x)} \, dx\\ &=4 \int \frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}} \left (-2-x+4 x^2+2 x^3+\left (-2+12 x^2+4 x^3\right ) \log (x)\right )}{x^2 \left (2-4 x^2\right )^2 \log ^2(x)} \, dx\\ &=4 \int \left (\frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}} (2+x)}{4 x^2 \left (-1+2 x^2\right ) \log ^2(x)}+\frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}} \left (-1+6 x^2+2 x^3\right )}{2 x^2 \left (-1+2 x^2\right )^2 \log (x)}\right ) \, dx\\ &=2 \int \frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}} \left (-1+6 x^2+2 x^3\right )}{x^2 \left (-1+2 x^2\right )^2 \log (x)} \, dx+\int \frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}} (2+x)}{x^2 \left (-1+2 x^2\right ) \log ^2(x)} \, dx\\ &=2 \int \left (-\frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{x^2 \log (x)}+\frac {2 e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}} (2+x)}{\left (-1+2 x^2\right )^2 \log (x)}+\frac {2 e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{\left (-1+2 x^2\right ) \log (x)}\right ) \, dx+\int \left (-\frac {2 e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{x^2 \log ^2(x)}-\frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{x \log ^2(x)}+\frac {2 e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}} (2+x)}{\left (-1+2 x^2\right ) \log ^2(x)}\right ) \, dx\\ &=-\left (2 \int \frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{x^2 \log ^2(x)} \, dx\right )+2 \int \frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}} (2+x)}{\left (-1+2 x^2\right ) \log ^2(x)} \, dx-2 \int \frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{x^2 \log (x)} \, dx+4 \int \frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}} (2+x)}{\left (-1+2 x^2\right )^2 \log (x)} \, dx+4 \int \frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{\left (-1+2 x^2\right ) \log (x)} \, dx-\int \frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{x \log ^2(x)} \, dx\\ &=2 \int \left (\frac {2 e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{\left (-1+2 x^2\right ) \log ^2(x)}+\frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}} x}{\left (-1+2 x^2\right ) \log ^2(x)}\right ) \, dx-2 \int \frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{x^2 \log ^2(x)} \, dx-2 \int \frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{x^2 \log (x)} \, dx+4 \int \left (-\frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{2 \left (1-\sqrt {2} x\right ) \log (x)}-\frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{2 \left (1+\sqrt {2} x\right ) \log (x)}\right ) \, dx+4 \int \left (\frac {2 e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{\left (-1+2 x^2\right )^2 \log (x)}+\frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}} x}{\left (-1+2 x^2\right )^2 \log (x)}\right ) \, dx-\int \frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{x \log ^2(x)} \, dx\\ &=-\left (2 \int \frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{x^2 \log ^2(x)} \, dx\right )+2 \int \frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}} x}{\left (-1+2 x^2\right ) \log ^2(x)} \, dx-2 \int \frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{x^2 \log (x)} \, dx-2 \int \frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{\left (1-\sqrt {2} x\right ) \log (x)} \, dx-2 \int \frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{\left (1+\sqrt {2} x\right ) \log (x)} \, dx+4 \int \frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{\left (-1+2 x^2\right ) \log ^2(x)} \, dx+4 \int \frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}} x}{\left (-1+2 x^2\right )^2 \log (x)} \, dx+8 \int \frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{\left (-1+2 x^2\right )^2 \log (x)} \, dx-\int \frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{x \log ^2(x)} \, dx\\ &=2 \int \left (-\frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{2 \sqrt {2} \left (1-\sqrt {2} x\right ) \log ^2(x)}+\frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{2 \sqrt {2} \left (1+\sqrt {2} x\right ) \log ^2(x)}\right ) \, dx-2 \int \frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{x^2 \log ^2(x)} \, dx-2 \int \frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{x^2 \log (x)} \, dx-2 \int \frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{\left (1-\sqrt {2} x\right ) \log (x)} \, dx-2 \int \frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{\left (1+\sqrt {2} x\right ) \log (x)} \, dx+4 \int \left (-\frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{2 \left (1-\sqrt {2} x\right ) \log ^2(x)}-\frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{2 \left (1+\sqrt {2} x\right ) \log ^2(x)}\right ) \, dx+4 \int \frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}} x}{\left (-1+2 x^2\right )^2 \log (x)} \, dx+8 \int \frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{\left (-1+2 x^2\right )^2 \log (x)} \, dx-\int \frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{x \log ^2(x)} \, dx\\ &=-\left (2 \int \frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{x^2 \log ^2(x)} \, dx\right )-2 \int \frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{\left (1-\sqrt {2} x\right ) \log ^2(x)} \, dx-2 \int \frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{\left (1+\sqrt {2} x\right ) \log ^2(x)} \, dx-2 \int \frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{x^2 \log (x)} \, dx-2 \int \frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{\left (1-\sqrt {2} x\right ) \log (x)} \, dx-2 \int \frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{\left (1+\sqrt {2} x\right ) \log (x)} \, dx+4 \int \frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}} x}{\left (-1+2 x^2\right )^2 \log (x)} \, dx+8 \int \frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{\left (-1+2 x^2\right )^2 \log (x)} \, dx-\frac {\int \frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{\left (1-\sqrt {2} x\right ) \log ^2(x)} \, dx}{\sqrt {2}}+\frac {\int \frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{\left (1+\sqrt {2} x\right ) \log ^2(x)} \, dx}{\sqrt {2}}-\int \frac {e^{\frac {-2-x}{x \left (-1+2 x^2\right ) \log (x)}}}{x \log ^2(x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.24, size = 20, normalized size = 1.05 \begin {gather*} e^{\frac {2+x}{x \log (x)-2 x^3 \log (x)}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 21, normalized size = 1.11 \begin {gather*} e^{\left (-\frac {x + 2}{{\left (2 \, x^{3} - x\right )} \log \relax (x)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.42, size = 37, normalized size = 1.95 \begin {gather*} e^{\left (-\frac {x}{2 \, x^{3} \log \relax (x) - x \log \relax (x)} - \frac {2}{2 \, x^{3} \log \relax (x) - x \log \relax (x)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 23, normalized size = 1.21
method | result | size |
risch | \({\mathrm e}^{-\frac {2+x}{x \left (2 x^{2}-1\right ) \ln \relax (x )}}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.35, size = 32, normalized size = 1.68 \begin {gather*} {\mathrm {e}}^{\frac {1}{\ln \relax (x)-2\,x^2\,\ln \relax (x)}}\,{\mathrm {e}}^{-\frac {2}{2\,x^3\,\ln \relax (x)-x\,\ln \relax (x)}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.56, size = 15, normalized size = 0.79 \begin {gather*} e^{\frac {- x - 2}{\left (2 x^{3} - x\right ) \log {\relax (x )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________