Optimal. Leaf size=25 \[ 2 e^3 \left (4 x+x \left (5+\frac {5 x}{e^x-x}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.74, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {18 e^{3+2 x}+8 e^3 x^2+e^{3+x} \left (-16 x-10 x^2\right )}{e^{2 x}-2 e^x x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^3 \left (9 e^{2 x}+4 x^2-e^x x (8+5 x)\right )}{\left (e^x-x\right )^2} \, dx\\ &=\left (2 e^3\right ) \int \frac {9 e^{2 x}+4 x^2-e^x x (8+5 x)}{\left (e^x-x\right )^2} \, dx\\ &=\left (2 e^3\right ) \int \left (9-\frac {5 (-2+x) x}{e^x-x}-\frac {5 (-1+x) x^2}{\left (e^x-x\right )^2}\right ) \, dx\\ &=18 e^3 x-\left (10 e^3\right ) \int \frac {(-2+x) x}{e^x-x} \, dx-\left (10 e^3\right ) \int \frac {(-1+x) x^2}{\left (e^x-x\right )^2} \, dx\\ &=18 e^3 x-\left (10 e^3\right ) \int \left (-\frac {2 x}{e^x-x}+\frac {x^2}{e^x-x}\right ) \, dx-\left (10 e^3\right ) \int \left (-\frac {x^2}{\left (e^x-x\right )^2}+\frac {x^3}{\left (e^x-x\right )^2}\right ) \, dx\\ &=18 e^3 x+\left (10 e^3\right ) \int \frac {x^2}{\left (e^x-x\right )^2} \, dx-\left (10 e^3\right ) \int \frac {x^2}{e^x-x} \, dx-\left (10 e^3\right ) \int \frac {x^3}{\left (e^x-x\right )^2} \, dx+\left (20 e^3\right ) \int \frac {x}{e^x-x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 23, normalized size = 0.92 \begin {gather*} 2 e^3 \left (9 x+\frac {5 x^2}{e^x-x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 30, normalized size = 1.20 \begin {gather*} \frac {2 \, {\left (4 \, x^{2} e^{6} - 9 \, x e^{\left (x + 6\right )}\right )}}{x e^{3} - e^{\left (x + 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 25, normalized size = 1.00 \begin {gather*} \frac {2 \, {\left (4 \, x^{2} e^{3} - 9 \, x e^{\left (x + 3\right )}\right )}}{x - e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 22, normalized size = 0.88
method | result | size |
risch | \(18 x \,{\mathrm e}^{3}-\frac {10 x^{2} {\mathrm e}^{3}}{x -{\mathrm e}^{x}}\) | \(22\) |
norman | \(\frac {8 x^{2} {\mathrm e}^{3}-18 x \,{\mathrm e}^{3} {\mathrm e}^{x}}{x -{\mathrm e}^{x}}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 25, normalized size = 1.00 \begin {gather*} \frac {2 \, {\left (4 \, x^{2} e^{3} - 9 \, x e^{\left (x + 3\right )}\right )}}{x - e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.09, size = 21, normalized size = 0.84 \begin {gather*} 18\,x\,{\mathrm {e}}^3-\frac {10\,x^2\,{\mathrm {e}}^3}{x-{\mathrm {e}}^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 19, normalized size = 0.76 \begin {gather*} \frac {10 x^{2} e^{3}}{- x + e^{x}} + 18 x e^{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________