Optimal. Leaf size=21 \[ x+\log \left (-6+25 e^{-e^{-1+4 x}}+x^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.98, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {25-100 e^{-1+4 x}+e^{e^{-1+4 x}} \left (-6+2 x+x^2\right )}{25+e^{e^{-1+4 x}} \left (-6+x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {100 e^{-1+4 x}}{25-6 e^{e^{-1+4 x}}+e^{e^{-1+4 x}} x^2}+\frac {25-6 e^{e^{-1+4 x}}+2 e^{e^{-1+4 x}} x+e^{e^{-1+4 x}} x^2}{25-6 e^{e^{-1+4 x}}+e^{e^{-1+4 x}} x^2}\right ) \, dx\\ &=-\left (100 \int \frac {e^{-1+4 x}}{25-6 e^{e^{-1+4 x}}+e^{e^{-1+4 x}} x^2} \, dx\right )+\int \frac {25-6 e^{e^{-1+4 x}}+2 e^{e^{-1+4 x}} x+e^{e^{-1+4 x}} x^2}{25-6 e^{e^{-1+4 x}}+e^{e^{-1+4 x}} x^2} \, dx\\ &=-\left (100 \int \frac {e^{-1+4 x}}{25+e^{e^{-1+4 x}} \left (-6+x^2\right )} \, dx\right )+\int \frac {25+e^{e^{-1+4 x}} \left (-6+2 x+x^2\right )}{25+e^{e^{-1+4 x}} \left (-6+x^2\right )} \, dx\\ &=-\left (100 \int \frac {e^{-1+4 x}}{25+e^{e^{-1+4 x}} \left (-6+x^2\right )} \, dx\right )+\int \left (\frac {-6+2 x+x^2}{-6+x^2}-\frac {50 x}{\left (-6+x^2\right ) \left (25-6 e^{e^{-1+4 x}}+e^{e^{-1+4 x}} x^2\right )}\right ) \, dx\\ &=-\left (50 \int \frac {x}{\left (-6+x^2\right ) \left (25-6 e^{e^{-1+4 x}}+e^{e^{-1+4 x}} x^2\right )} \, dx\right )-100 \int \frac {e^{-1+4 x}}{25+e^{e^{-1+4 x}} \left (-6+x^2\right )} \, dx+\int \frac {-6+2 x+x^2}{-6+x^2} \, dx\\ &=-\left (50 \int \frac {x}{\left (-6+x^2\right ) \left (25+e^{e^{-1+4 x}} \left (-6+x^2\right )\right )} \, dx\right )-100 \int \frac {e^{-1+4 x}}{25+e^{e^{-1+4 x}} \left (-6+x^2\right )} \, dx+\int \left (1+\frac {2 x}{-6+x^2}\right ) \, dx\\ &=x+2 \int \frac {x}{-6+x^2} \, dx-50 \int \left (-\frac {1}{2 \left (\sqrt {6}-x\right ) \left (25+e^{e^{-1+4 x}} \left (-6+x^2\right )\right )}+\frac {1}{2 \left (\sqrt {6}+x\right ) \left (25+e^{e^{-1+4 x}} \left (-6+x^2\right )\right )}\right ) \, dx-100 \int \frac {e^{-1+4 x}}{25+e^{e^{-1+4 x}} \left (-6+x^2\right )} \, dx\\ &=x+\log \left (6-x^2\right )+25 \int \frac {1}{\left (\sqrt {6}-x\right ) \left (25+e^{e^{-1+4 x}} \left (-6+x^2\right )\right )} \, dx-25 \int \frac {1}{\left (\sqrt {6}+x\right ) \left (25+e^{e^{-1+4 x}} \left (-6+x^2\right )\right )} \, dx-100 \int \frac {e^{-1+4 x}}{25+e^{e^{-1+4 x}} \left (-6+x^2\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.74, size = 29, normalized size = 1.38 \begin {gather*} -e^{-1+4 x}+x+\log \left (25+e^{e^{-1+4 x}} \left (-6+x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.64, size = 40, normalized size = 1.90 \begin {gather*} x - e^{\left (4 \, x - 1\right )} + \log \left (x^{2} - 6\right ) + \log \left (\frac {{\left (x^{2} - 6\right )} e^{\left (e^{\left (4 \, x - 1\right )}\right )} + 25}{x^{2} - 6}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (x^{2} + 2 \, x - 6\right )} e^{\left (e^{\left (4 \, x - 1\right )}\right )} - 100 \, e^{\left (4 \, x - 1\right )} + 25}{{\left (x^{2} - 6\right )} e^{\left (e^{\left (4 \, x - 1\right )}\right )} + 25}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 34, normalized size = 1.62
method | result | size |
norman | \(x -{\mathrm e}^{4 x -1}+\ln \left ({\mathrm e}^{{\mathrm e}^{4 x -1}} x^{2}-6 \,{\mathrm e}^{{\mathrm e}^{4 x -1}}+25\right )\) | \(34\) |
risch | \(x +\ln \left (x^{2}-6\right )-{\mathrm e}^{4 x -1}+\ln \left ({\mathrm e}^{{\mathrm e}^{4 x -1}}+\frac {25}{x^{2}-6}\right )\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.55, size = 45, normalized size = 2.14 \begin {gather*} {\left (x e - e^{\left (4 \, x\right )}\right )} e^{\left (-1\right )} + \log \left (x^{2} - 6\right ) + \log \left (\frac {{\left (x^{2} - 6\right )} e^{\left (e^{\left (4 \, x - 1\right )}\right )} + 25}{x^{2} - 6}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.21, size = 33, normalized size = 1.57 \begin {gather*} x+\ln \left (x^2\,{\mathrm {e}}^{{\mathrm {e}}^{4\,x-1}}-6\,{\mathrm {e}}^{{\mathrm {e}}^{4\,x-1}}+25\right )-{\mathrm {e}}^{4\,x-1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 31, normalized size = 1.48 \begin {gather*} x - e^{4 x - 1} + \log {\left (x^{2} - 6 \right )} + \log {\left (e^{e^{4 x - 1}} + \frac {25}{x^{2} - 6} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________