Optimal. Leaf size=28 \[ \frac {x}{-e^{3+e^x-x+x^2}+x^2}+\log (2 x) \]
________________________________________________________________________________________
Rubi [F] time = 7.96, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{6+2 e^x-2 x+2 x^2}-x^3+x^4+e^{3+e^x-x+x^2} \left (-x-3 x^2+e^x x^2+2 x^3\right )}{e^{6+2 e^x-2 x+2 x^2} x-2 e^{3+e^x-x+x^2} x^3+x^5} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{2 x} \left (e^{6+2 e^x-2 x+2 x^2}-x^3+x^4+e^{3+e^x-x+x^2} \left (-x-3 x^2+e^x x^2+2 x^3\right )\right )}{x \left (e^{3+e^x+x^2}-e^x x^2\right )^2} \, dx\\ &=\int \left (\frac {1}{x}+\frac {e^{2 x} x^2 \left (-2-x+e^x x+2 x^2\right )}{\left (-e^{3+e^x+x^2}+e^x x^2\right )^2}-\frac {e^x \left (-1-x+e^x x+2 x^2\right )}{-e^{3+e^x+x^2}+e^x x^2}\right ) \, dx\\ &=\log (x)+\int \frac {e^{2 x} x^2 \left (-2-x+e^x x+2 x^2\right )}{\left (-e^{3+e^x+x^2}+e^x x^2\right )^2} \, dx-\int \frac {e^x \left (-1-x+e^x x+2 x^2\right )}{-e^{3+e^x+x^2}+e^x x^2} \, dx\\ &=\log (x)+\int \left (-\frac {2 e^{2 x} x^2}{\left (-e^{3+e^x+x^2}+e^x x^2\right )^2}-\frac {e^{2 x} x^3}{\left (-e^{3+e^x+x^2}+e^x x^2\right )^2}+\frac {e^{3 x} x^3}{\left (-e^{3+e^x+x^2}+e^x x^2\right )^2}+\frac {2 e^{2 x} x^4}{\left (-e^{3+e^x+x^2}+e^x x^2\right )^2}\right ) \, dx-\int \left (\frac {e^x}{e^{3+e^x+x^2}-e^x x^2}-\frac {e^x x}{-e^{3+e^x+x^2}+e^x x^2}+\frac {e^{2 x} x}{-e^{3+e^x+x^2}+e^x x^2}+\frac {2 e^x x^2}{-e^{3+e^x+x^2}+e^x x^2}\right ) \, dx\\ &=\log (x)-2 \int \frac {e^{2 x} x^2}{\left (-e^{3+e^x+x^2}+e^x x^2\right )^2} \, dx+2 \int \frac {e^{2 x} x^4}{\left (-e^{3+e^x+x^2}+e^x x^2\right )^2} \, dx-2 \int \frac {e^x x^2}{-e^{3+e^x+x^2}+e^x x^2} \, dx-\int \frac {e^x}{e^{3+e^x+x^2}-e^x x^2} \, dx-\int \frac {e^{2 x} x^3}{\left (-e^{3+e^x+x^2}+e^x x^2\right )^2} \, dx+\int \frac {e^{3 x} x^3}{\left (-e^{3+e^x+x^2}+e^x x^2\right )^2} \, dx+\int \frac {e^x x}{-e^{3+e^x+x^2}+e^x x^2} \, dx-\int \frac {e^{2 x} x}{-e^{3+e^x+x^2}+e^x x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 30, normalized size = 1.07 \begin {gather*} -\frac {e^x x}{e^{3+e^x+x^2}-e^x x^2}+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 43, normalized size = 1.54 \begin {gather*} \frac {x^{2} \log \relax (x) - e^{\left (x^{2} - x + e^{x} + 3\right )} \log \relax (x) + x}{x^{2} - e^{\left (x^{2} - x + e^{x} + 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.41, size = 410, normalized size = 14.64 \begin {gather*} \frac {2 \, x^{6} e^{x} \log \relax (x) + x^{5} e^{\left (2 \, x\right )} \log \relax (x) - x^{5} e^{x} \log \relax (x) + 2 \, x^{5} e^{x} - 4 \, x^{4} e^{\left (x^{2} + e^{x} + 3\right )} \log \relax (x) - 2 \, x^{4} e^{x} \log \relax (x) + x^{4} e^{\left (2 \, x\right )} - x^{4} e^{x} - 2 \, x^{3} e^{\left (x^{2} + x + e^{x} + 3\right )} \log \relax (x) + 2 \, x^{3} e^{\left (x^{2} + e^{x} + 3\right )} \log \relax (x) - 2 \, x^{3} e^{\left (x^{2} + e^{x} + 3\right )} - 2 \, x^{3} e^{x} + 2 \, x^{2} e^{\left (2 \, x^{2} - x + 2 \, e^{x} + 6\right )} \log \relax (x) + 4 \, x^{2} e^{\left (x^{2} + e^{x} + 3\right )} \log \relax (x) - x^{2} e^{\left (x^{2} + x + e^{x} + 3\right )} + x^{2} e^{\left (x^{2} + e^{x} + 3\right )} - x e^{\left (2 \, x^{2} - x + 2 \, e^{x} + 6\right )} \log \relax (x) + x e^{\left (2 \, x^{2} + 2 \, e^{x} + 6\right )} \log \relax (x) + 2 \, x e^{\left (x^{2} + e^{x} + 3\right )} - 2 \, e^{\left (2 \, x^{2} - x + 2 \, e^{x} + 6\right )} \log \relax (x)}{2 \, x^{6} e^{x} + x^{5} e^{\left (2 \, x\right )} - x^{5} e^{x} - 4 \, x^{4} e^{\left (x^{2} + e^{x} + 3\right )} - 2 \, x^{4} e^{x} - 2 \, x^{3} e^{\left (x^{2} + x + e^{x} + 3\right )} + 2 \, x^{3} e^{\left (x^{2} + e^{x} + 3\right )} + 2 \, x^{2} e^{\left (2 \, x^{2} - x + 2 \, e^{x} + 6\right )} + 4 \, x^{2} e^{\left (x^{2} + e^{x} + 3\right )} - x e^{\left (2 \, x^{2} - x + 2 \, e^{x} + 6\right )} + x e^{\left (2 \, x^{2} + 2 \, e^{x} + 6\right )} - 2 \, e^{\left (2 \, x^{2} - x + 2 \, e^{x} + 6\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 25, normalized size = 0.89
method | result | size |
risch | \(\ln \relax (x )+\frac {x}{x^{2}-{\mathrm e}^{{\mathrm e}^{x}+x^{2}-x +3}}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.04, size = 26, normalized size = 0.93 \begin {gather*} \frac {x e^{x}}{x^{2} e^{x} - e^{\left (x^{2} + e^{x} + 3\right )}} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.31, size = 26, normalized size = 0.93 \begin {gather*} \ln \relax (x)+\frac {x}{x^2-{\mathrm {e}}^{-x}\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{{\mathrm {e}}^x}\,{\mathrm {e}}^3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 19, normalized size = 0.68 \begin {gather*} - \frac {x}{- x^{2} + e^{x^{2} - x + e^{x} + 3}} + \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________