3.20.96 \(\int \frac {-1500 e^{15-3 x} x^5+e^{20-4 x} (-2500 x^5+2500 x^6)+e^x (e^{20-4 x} (2500 x^3-2500 x^4)+e^{15-3 x} (-1500 x^3+1500 x^4))+(-2700 e^{10-2 x} x^5+e^{15-3 x} (-6000 x^5+4500 x^6)+e^x (e^{15-3 x} (6000 x^3-4500 x^4)+e^{10-2 x} (-2700 x^3+2700 x^4))) \log (\frac {-e^x+x^2}{2 x})+(-1620 e^{5-x} x^5+e^{10-2 x} (-5400 x^5+2700 x^6)+e^x (e^{10-2 x} (5400 x^3-2700 x^4)+e^{5-x} (-1620 x^3+1620 x^4))) \log ^2(\frac {-e^x+x^2}{2 x})+(-324 x^5+e^{5-x} (-2160 x^5+540 x^6)+e^x (-324 x^3+324 x^4+e^{5-x} (2160 x^3-540 x^4))) \log ^3(\frac {-e^x+x^2}{2 x})+(324 e^x x^3-324 x^5) \log ^4(\frac {-e^x+x^2}{2 x})}{81 e^x-81 x^2} \, dx\)
Optimal. Leaf size=32 \[ \left (\frac {5}{3} e^{5-x} x+x \log \left (\frac {1}{2} \left (-\frac {e^x}{x}+x\right )\right )\right )^4 \]
________________________________________________________________________________________
Rubi [F] time = 180.00, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used =
{} \begin {gather*} \text {\$Aborted} \end {gather*}
Verification is not applicable to the result.
[In]
Int[(-1500*E^(15 - 3*x)*x^5 + E^(20 - 4*x)*(-2500*x^5 + 2500*x^6) + E^x*(E^(20 - 4*x)*(2500*x^3 - 2500*x^4) +
E^(15 - 3*x)*(-1500*x^3 + 1500*x^4)) + (-2700*E^(10 - 2*x)*x^5 + E^(15 - 3*x)*(-6000*x^5 + 4500*x^6) + E^x*(E^
(15 - 3*x)*(6000*x^3 - 4500*x^4) + E^(10 - 2*x)*(-2700*x^3 + 2700*x^4)))*Log[(-E^x + x^2)/(2*x)] + (-1620*E^(5
- x)*x^5 + E^(10 - 2*x)*(-5400*x^5 + 2700*x^6) + E^x*(E^(10 - 2*x)*(5400*x^3 - 2700*x^4) + E^(5 - x)*(-1620*x
^3 + 1620*x^4)))*Log[(-E^x + x^2)/(2*x)]^2 + (-324*x^5 + E^(5 - x)*(-2160*x^5 + 540*x^6) + E^x*(-324*x^3 + 324
*x^4 + E^(5 - x)*(2160*x^3 - 540*x^4)))*Log[(-E^x + x^2)/(2*x)]^3 + (324*E^x*x^3 - 324*x^5)*Log[(-E^x + x^2)/(
2*x)]^4)/(81*E^x - 81*x^2),x]
[Out]
$Aborted
Rubi steps
Aborted
________________________________________________________________________________________
Mathematica [A] time = 0.43, size = 42, normalized size = 1.31 \begin {gather*} \frac {1}{81} e^{-4 x} x^4 \left (5 e^5+3 e^x \log \left (\frac {-e^x+x^2}{2 x}\right )\right )^4 \end {gather*}
Antiderivative was successfully verified.
[In]
Integrate[(-1500*E^(15 - 3*x)*x^5 + E^(20 - 4*x)*(-2500*x^5 + 2500*x^6) + E^x*(E^(20 - 4*x)*(2500*x^3 - 2500*x
^4) + E^(15 - 3*x)*(-1500*x^3 + 1500*x^4)) + (-2700*E^(10 - 2*x)*x^5 + E^(15 - 3*x)*(-6000*x^5 + 4500*x^6) + E
^x*(E^(15 - 3*x)*(6000*x^3 - 4500*x^4) + E^(10 - 2*x)*(-2700*x^3 + 2700*x^4)))*Log[(-E^x + x^2)/(2*x)] + (-162
0*E^(5 - x)*x^5 + E^(10 - 2*x)*(-5400*x^5 + 2700*x^6) + E^x*(E^(10 - 2*x)*(5400*x^3 - 2700*x^4) + E^(5 - x)*(-
1620*x^3 + 1620*x^4)))*Log[(-E^x + x^2)/(2*x)]^2 + (-324*x^5 + E^(5 - x)*(-2160*x^5 + 540*x^6) + E^x*(-324*x^3
+ 324*x^4 + E^(5 - x)*(2160*x^3 - 540*x^4)))*Log[(-E^x + x^2)/(2*x)]^3 + (324*E^x*x^3 - 324*x^5)*Log[(-E^x +
x^2)/(2*x)]^4)/(81*E^x - 81*x^2),x]
[Out]
(x^4*(5*E^5 + 3*E^x*Log[(-E^x + x^2)/(2*x)])^4)/(81*E^(4*x))
________________________________________________________________________________________
fricas [B] time = 1.24, size = 116, normalized size = 3.62 \begin {gather*} \frac {1}{81} \, {\left (81 \, x^{4} e^{\left (4 \, x\right )} \log \left (\frac {x^{2} - e^{x}}{2 \, x}\right )^{4} + 540 \, x^{4} e^{\left (3 \, x + 5\right )} \log \left (\frac {x^{2} - e^{x}}{2 \, x}\right )^{3} + 1350 \, x^{4} e^{\left (2 \, x + 10\right )} \log \left (\frac {x^{2} - e^{x}}{2 \, x}\right )^{2} + 1500 \, x^{4} e^{\left (x + 15\right )} \log \left (\frac {x^{2} - e^{x}}{2 \, x}\right ) + 625 \, x^{4} e^{20}\right )} e^{\left (-4 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((324*exp(x)*x^3-324*x^5)*log(1/2*(-exp(x)+x^2)/x)^4+(((-540*x^4+2160*x^3)*exp(5-x)+324*x^4-324*x^3)
*exp(x)+(540*x^6-2160*x^5)*exp(5-x)-324*x^5)*log(1/2*(-exp(x)+x^2)/x)^3+(((-2700*x^4+5400*x^3)*exp(5-x)^2+(162
0*x^4-1620*x^3)*exp(5-x))*exp(x)+(2700*x^6-5400*x^5)*exp(5-x)^2-1620*x^5*exp(5-x))*log(1/2*(-exp(x)+x^2)/x)^2+
(((-4500*x^4+6000*x^3)*exp(5-x)^3+(2700*x^4-2700*x^3)*exp(5-x)^2)*exp(x)+(4500*x^6-6000*x^5)*exp(5-x)^3-2700*x
^5*exp(5-x)^2)*log(1/2*(-exp(x)+x^2)/x)+((-2500*x^4+2500*x^3)*exp(5-x)^4+(1500*x^4-1500*x^3)*exp(5-x)^3)*exp(x
)+(2500*x^6-2500*x^5)*exp(5-x)^4-1500*x^5*exp(5-x)^3)/(81*exp(x)-81*x^2),x, algorithm="fricas")
[Out]
1/81*(81*x^4*e^(4*x)*log(1/2*(x^2 - e^x)/x)^4 + 540*x^4*e^(3*x + 5)*log(1/2*(x^2 - e^x)/x)^3 + 1350*x^4*e^(2*x
+ 10)*log(1/2*(x^2 - e^x)/x)^2 + 1500*x^4*e^(x + 15)*log(1/2*(x^2 - e^x)/x) + 625*x^4*e^20)*e^(-4*x)
________________________________________________________________________________________
giac [B] time = 7.13, size = 672, normalized size = 21.00 \begin {gather*} \frac {1}{81} \, {\left (81 \, x^{4} e^{\left (4 \, x\right )} \log \relax (2)^{4} - 324 \, x^{4} e^{\left (4 \, x\right )} \log \relax (2)^{3} \log \left (x^{2} - e^{x}\right ) + 486 \, x^{4} e^{\left (4 \, x\right )} \log \relax (2)^{2} \log \left (x^{2} - e^{x}\right )^{2} - 324 \, x^{4} e^{\left (4 \, x\right )} \log \relax (2) \log \left (x^{2} - e^{x}\right )^{3} + 81 \, x^{4} e^{\left (4 \, x\right )} \log \left (x^{2} - e^{x}\right )^{4} + 324 \, x^{4} e^{\left (4 \, x\right )} \log \relax (2)^{3} \log \relax (x) - 972 \, x^{4} e^{\left (4 \, x\right )} \log \relax (2)^{2} \log \left (x^{2} - e^{x}\right ) \log \relax (x) + 972 \, x^{4} e^{\left (4 \, x\right )} \log \relax (2) \log \left (x^{2} - e^{x}\right )^{2} \log \relax (x) - 324 \, x^{4} e^{\left (4 \, x\right )} \log \left (x^{2} - e^{x}\right )^{3} \log \relax (x) + 486 \, x^{4} e^{\left (4 \, x\right )} \log \relax (2)^{2} \log \relax (x)^{2} - 972 \, x^{4} e^{\left (4 \, x\right )} \log \relax (2) \log \left (x^{2} - e^{x}\right ) \log \relax (x)^{2} + 486 \, x^{4} e^{\left (4 \, x\right )} \log \left (x^{2} - e^{x}\right )^{2} \log \relax (x)^{2} + 324 \, x^{4} e^{\left (4 \, x\right )} \log \relax (2) \log \relax (x)^{3} - 324 \, x^{4} e^{\left (4 \, x\right )} \log \left (x^{2} - e^{x}\right ) \log \relax (x)^{3} + 81 \, x^{4} e^{\left (4 \, x\right )} \log \relax (x)^{4} - 540 \, x^{4} e^{\left (3 \, x + 5\right )} \log \relax (2)^{3} + 1620 \, x^{4} e^{\left (3 \, x + 5\right )} \log \relax (2)^{2} \log \left (x^{2} - e^{x}\right ) - 1620 \, x^{4} e^{\left (3 \, x + 5\right )} \log \relax (2) \log \left (x^{2} - e^{x}\right )^{2} + 540 \, x^{4} e^{\left (3 \, x + 5\right )} \log \left (x^{2} - e^{x}\right )^{3} - 1620 \, x^{4} e^{\left (3 \, x + 5\right )} \log \relax (2)^{2} \log \relax (x) + 3240 \, x^{4} e^{\left (3 \, x + 5\right )} \log \relax (2) \log \left (x^{2} - e^{x}\right ) \log \relax (x) - 1620 \, x^{4} e^{\left (3 \, x + 5\right )} \log \left (x^{2} - e^{x}\right )^{2} \log \relax (x) - 1620 \, x^{4} e^{\left (3 \, x + 5\right )} \log \relax (2) \log \relax (x)^{2} + 1620 \, x^{4} e^{\left (3 \, x + 5\right )} \log \left (x^{2} - e^{x}\right ) \log \relax (x)^{2} - 540 \, x^{4} e^{\left (3 \, x + 5\right )} \log \relax (x)^{3} + 1350 \, x^{4} e^{\left (2 \, x + 10\right )} \log \relax (2)^{2} - 2700 \, x^{4} e^{\left (2 \, x + 10\right )} \log \relax (2) \log \left (x^{2} - e^{x}\right ) + 1350 \, x^{4} e^{\left (2 \, x + 10\right )} \log \left (x^{2} - e^{x}\right )^{2} + 2700 \, x^{4} e^{\left (2 \, x + 10\right )} \log \relax (2) \log \relax (x) - 2700 \, x^{4} e^{\left (2 \, x + 10\right )} \log \left (x^{2} - e^{x}\right ) \log \relax (x) + 1350 \, x^{4} e^{\left (2 \, x + 10\right )} \log \relax (x)^{2} - 1500 \, x^{4} e^{\left (x + 15\right )} \log \relax (2) + 1500 \, x^{4} e^{\left (x + 15\right )} \log \left (x^{2} - e^{x}\right ) - 1500 \, x^{4} e^{\left (x + 15\right )} \log \relax (x) + 625 \, x^{4} e^{20}\right )} e^{\left (-4 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((324*exp(x)*x^3-324*x^5)*log(1/2*(-exp(x)+x^2)/x)^4+(((-540*x^4+2160*x^3)*exp(5-x)+324*x^4-324*x^3)
*exp(x)+(540*x^6-2160*x^5)*exp(5-x)-324*x^5)*log(1/2*(-exp(x)+x^2)/x)^3+(((-2700*x^4+5400*x^3)*exp(5-x)^2+(162
0*x^4-1620*x^3)*exp(5-x))*exp(x)+(2700*x^6-5400*x^5)*exp(5-x)^2-1620*x^5*exp(5-x))*log(1/2*(-exp(x)+x^2)/x)^2+
(((-4500*x^4+6000*x^3)*exp(5-x)^3+(2700*x^4-2700*x^3)*exp(5-x)^2)*exp(x)+(4500*x^6-6000*x^5)*exp(5-x)^3-2700*x
^5*exp(5-x)^2)*log(1/2*(-exp(x)+x^2)/x)+((-2500*x^4+2500*x^3)*exp(5-x)^4+(1500*x^4-1500*x^3)*exp(5-x)^3)*exp(x
)+(2500*x^6-2500*x^5)*exp(5-x)^4-1500*x^5*exp(5-x)^3)/(81*exp(x)-81*x^2),x, algorithm="giac")
[Out]
1/81*(81*x^4*e^(4*x)*log(2)^4 - 324*x^4*e^(4*x)*log(2)^3*log(x^2 - e^x) + 486*x^4*e^(4*x)*log(2)^2*log(x^2 - e
^x)^2 - 324*x^4*e^(4*x)*log(2)*log(x^2 - e^x)^3 + 81*x^4*e^(4*x)*log(x^2 - e^x)^4 + 324*x^4*e^(4*x)*log(2)^3*l
og(x) - 972*x^4*e^(4*x)*log(2)^2*log(x^2 - e^x)*log(x) + 972*x^4*e^(4*x)*log(2)*log(x^2 - e^x)^2*log(x) - 324*
x^4*e^(4*x)*log(x^2 - e^x)^3*log(x) + 486*x^4*e^(4*x)*log(2)^2*log(x)^2 - 972*x^4*e^(4*x)*log(2)*log(x^2 - e^x
)*log(x)^2 + 486*x^4*e^(4*x)*log(x^2 - e^x)^2*log(x)^2 + 324*x^4*e^(4*x)*log(2)*log(x)^3 - 324*x^4*e^(4*x)*log
(x^2 - e^x)*log(x)^3 + 81*x^4*e^(4*x)*log(x)^4 - 540*x^4*e^(3*x + 5)*log(2)^3 + 1620*x^4*e^(3*x + 5)*log(2)^2*
log(x^2 - e^x) - 1620*x^4*e^(3*x + 5)*log(2)*log(x^2 - e^x)^2 + 540*x^4*e^(3*x + 5)*log(x^2 - e^x)^3 - 1620*x^
4*e^(3*x + 5)*log(2)^2*log(x) + 3240*x^4*e^(3*x + 5)*log(2)*log(x^2 - e^x)*log(x) - 1620*x^4*e^(3*x + 5)*log(x
^2 - e^x)^2*log(x) - 1620*x^4*e^(3*x + 5)*log(2)*log(x)^2 + 1620*x^4*e^(3*x + 5)*log(x^2 - e^x)*log(x)^2 - 540
*x^4*e^(3*x + 5)*log(x)^3 + 1350*x^4*e^(2*x + 10)*log(2)^2 - 2700*x^4*e^(2*x + 10)*log(2)*log(x^2 - e^x) + 135
0*x^4*e^(2*x + 10)*log(x^2 - e^x)^2 + 2700*x^4*e^(2*x + 10)*log(2)*log(x) - 2700*x^4*e^(2*x + 10)*log(x^2 - e^
x)*log(x) + 1350*x^4*e^(2*x + 10)*log(x)^2 - 1500*x^4*e^(x + 15)*log(2) + 1500*x^4*e^(x + 15)*log(x^2 - e^x) -
1500*x^4*e^(x + 15)*log(x) + 625*x^4*e^20)*e^(-4*x)
________________________________________________________________________________________
maple [C] time = 4.65, size = 11218, normalized size = 350.56
|
|
|
method |
result |
size |
|
|
|
risch |
\(\text {Expression too large to display}\) |
\(11218\) |
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((324*exp(x)*x^3-324*x^5)*ln(1/2*(-exp(x)+x^2)/x)^4+(((-540*x^4+2160*x^3)*exp(5-x)+324*x^4-324*x^3)*exp(x)
+(540*x^6-2160*x^5)*exp(5-x)-324*x^5)*ln(1/2*(-exp(x)+x^2)/x)^3+(((-2700*x^4+5400*x^3)*exp(5-x)^2+(1620*x^4-16
20*x^3)*exp(5-x))*exp(x)+(2700*x^6-5400*x^5)*exp(5-x)^2-1620*x^5*exp(5-x))*ln(1/2*(-exp(x)+x^2)/x)^2+(((-4500*
x^4+6000*x^3)*exp(5-x)^3+(2700*x^4-2700*x^3)*exp(5-x)^2)*exp(x)+(4500*x^6-6000*x^5)*exp(5-x)^3-2700*x^5*exp(5-
x)^2)*ln(1/2*(-exp(x)+x^2)/x)+((-2500*x^4+2500*x^3)*exp(5-x)^4+(1500*x^4-1500*x^3)*exp(5-x)^3)*exp(x)+(2500*x^
6-2500*x^5)*exp(5-x)^4-1500*x^5*exp(5-x)^3)/(81*exp(x)-81*x^2),x,method=_RETURNVERBOSE)
[Out]
result too large to display
________________________________________________________________________________________
maxima [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((324*exp(x)*x^3-324*x^5)*log(1/2*(-exp(x)+x^2)/x)^4+(((-540*x^4+2160*x^3)*exp(5-x)+324*x^4-324*x^3)
*exp(x)+(540*x^6-2160*x^5)*exp(5-x)-324*x^5)*log(1/2*(-exp(x)+x^2)/x)^3+(((-2700*x^4+5400*x^3)*exp(5-x)^2+(162
0*x^4-1620*x^3)*exp(5-x))*exp(x)+(2700*x^6-5400*x^5)*exp(5-x)^2-1620*x^5*exp(5-x))*log(1/2*(-exp(x)+x^2)/x)^2+
(((-4500*x^4+6000*x^3)*exp(5-x)^3+(2700*x^4-2700*x^3)*exp(5-x)^2)*exp(x)+(4500*x^6-6000*x^5)*exp(5-x)^3-2700*x
^5*exp(5-x)^2)*log(1/2*(-exp(x)+x^2)/x)+((-2500*x^4+2500*x^3)*exp(5-x)^4+(1500*x^4-1500*x^3)*exp(5-x)^3)*exp(x
)+(2500*x^6-2500*x^5)*exp(5-x)^4-1500*x^5*exp(5-x)^3)/(81*exp(x)-81*x^2),x, algorithm="maxima")
[Out]
Timed out
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {{\mathrm {e}}^x\,\left ({\mathrm {e}}^{15-3\,x}\,\left (1500\,x^3-1500\,x^4\right )-{\mathrm {e}}^{20-4\,x}\,\left (2500\,x^3-2500\,x^4\right )\right )+{\ln \left (-\frac {\frac {{\mathrm {e}}^x}{2}-\frac {x^2}{2}}{x}\right )}^2\,\left ({\mathrm {e}}^x\,\left ({\mathrm {e}}^{5-x}\,\left (1620\,x^3-1620\,x^4\right )-{\mathrm {e}}^{10-2\,x}\,\left (5400\,x^3-2700\,x^4\right )\right )+{\mathrm {e}}^{10-2\,x}\,\left (5400\,x^5-2700\,x^6\right )+1620\,x^5\,{\mathrm {e}}^{5-x}\right )+{\ln \left (-\frac {\frac {{\mathrm {e}}^x}{2}-\frac {x^2}{2}}{x}\right )}^3\,\left ({\mathrm {e}}^{5-x}\,\left (2160\,x^5-540\,x^6\right )-{\mathrm {e}}^x\,\left ({\mathrm {e}}^{5-x}\,\left (2160\,x^3-540\,x^4\right )-324\,x^3+324\,x^4\right )+324\,x^5\right )+{\mathrm {e}}^{20-4\,x}\,\left (2500\,x^5-2500\,x^6\right )+1500\,x^5\,{\mathrm {e}}^{15-3\,x}-{\ln \left (-\frac {\frac {{\mathrm {e}}^x}{2}-\frac {x^2}{2}}{x}\right )}^4\,\left (324\,x^3\,{\mathrm {e}}^x-324\,x^5\right )+\ln \left (-\frac {\frac {{\mathrm {e}}^x}{2}-\frac {x^2}{2}}{x}\right )\,\left ({\mathrm {e}}^x\,\left ({\mathrm {e}}^{10-2\,x}\,\left (2700\,x^3-2700\,x^4\right )-{\mathrm {e}}^{15-3\,x}\,\left (6000\,x^3-4500\,x^4\right )\right )+{\mathrm {e}}^{15-3\,x}\,\left (6000\,x^5-4500\,x^6\right )+2700\,x^5\,{\mathrm {e}}^{10-2\,x}\right )}{81\,{\mathrm {e}}^x-81\,x^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(exp(x)*(exp(15 - 3*x)*(1500*x^3 - 1500*x^4) - exp(20 - 4*x)*(2500*x^3 - 2500*x^4)) + log(-(exp(x)/2 - x^
2/2)/x)^2*(exp(x)*(exp(5 - x)*(1620*x^3 - 1620*x^4) - exp(10 - 2*x)*(5400*x^3 - 2700*x^4)) + exp(10 - 2*x)*(54
00*x^5 - 2700*x^6) + 1620*x^5*exp(5 - x)) + log(-(exp(x)/2 - x^2/2)/x)^3*(exp(5 - x)*(2160*x^5 - 540*x^6) - ex
p(x)*(exp(5 - x)*(2160*x^3 - 540*x^4) - 324*x^3 + 324*x^4) + 324*x^5) + exp(20 - 4*x)*(2500*x^5 - 2500*x^6) +
1500*x^5*exp(15 - 3*x) - log(-(exp(x)/2 - x^2/2)/x)^4*(324*x^3*exp(x) - 324*x^5) + log(-(exp(x)/2 - x^2/2)/x)*
(exp(x)*(exp(10 - 2*x)*(2700*x^3 - 2700*x^4) - exp(15 - 3*x)*(6000*x^3 - 4500*x^4)) + exp(15 - 3*x)*(6000*x^5
- 4500*x^6) + 2700*x^5*exp(10 - 2*x)))/(81*exp(x) - 81*x^2),x)
[Out]
int(-(exp(x)*(exp(15 - 3*x)*(1500*x^3 - 1500*x^4) - exp(20 - 4*x)*(2500*x^3 - 2500*x^4)) + log(-(exp(x)/2 - x^
2/2)/x)^2*(exp(x)*(exp(5 - x)*(1620*x^3 - 1620*x^4) - exp(10 - 2*x)*(5400*x^3 - 2700*x^4)) + exp(10 - 2*x)*(54
00*x^5 - 2700*x^6) + 1620*x^5*exp(5 - x)) + log(-(exp(x)/2 - x^2/2)/x)^3*(exp(5 - x)*(2160*x^5 - 540*x^6) - ex
p(x)*(exp(5 - x)*(2160*x^3 - 540*x^4) - 324*x^3 + 324*x^4) + 324*x^5) + exp(20 - 4*x)*(2500*x^5 - 2500*x^6) +
1500*x^5*exp(15 - 3*x) - log(-(exp(x)/2 - x^2/2)/x)^4*(324*x^3*exp(x) - 324*x^5) + log(-(exp(x)/2 - x^2/2)/x)*
(exp(x)*(exp(10 - 2*x)*(2700*x^3 - 2700*x^4) - exp(15 - 3*x)*(6000*x^3 - 4500*x^4)) + exp(15 - 3*x)*(6000*x^5
- 4500*x^6) + 2700*x^5*exp(10 - 2*x)))/(81*exp(x) - 81*x^2), x)
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((324*exp(x)*x**3-324*x**5)*ln(1/2*(-exp(x)+x**2)/x)**4+(((-540*x**4+2160*x**3)*exp(5-x)+324*x**4-32
4*x**3)*exp(x)+(540*x**6-2160*x**5)*exp(5-x)-324*x**5)*ln(1/2*(-exp(x)+x**2)/x)**3+(((-2700*x**4+5400*x**3)*ex
p(5-x)**2+(1620*x**4-1620*x**3)*exp(5-x))*exp(x)+(2700*x**6-5400*x**5)*exp(5-x)**2-1620*x**5*exp(5-x))*ln(1/2*
(-exp(x)+x**2)/x)**2+(((-4500*x**4+6000*x**3)*exp(5-x)**3+(2700*x**4-2700*x**3)*exp(5-x)**2)*exp(x)+(4500*x**6
-6000*x**5)*exp(5-x)**3-2700*x**5*exp(5-x)**2)*ln(1/2*(-exp(x)+x**2)/x)+((-2500*x**4+2500*x**3)*exp(5-x)**4+(1
500*x**4-1500*x**3)*exp(5-x)**3)*exp(x)+(2500*x**6-2500*x**5)*exp(5-x)**4-1500*x**5*exp(5-x)**3)/(81*exp(x)-81
*x**2),x)
[Out]
Timed out
________________________________________________________________________________________