Optimal. Leaf size=29 \[ \left (e^{e^{2 x}}+x+e^x \left (5+x-\log \left (\frac {3 (-4+x)}{x}\right )\right )\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 180.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \text {\$Aborted} \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
Aborted
________________________________________________________________________________________
Mathematica [A] time = 0.32, size = 32, normalized size = 1.10 \begin {gather*} \left (e^{e^{2 x}}+x+e^x (5+x)-e^x \log \left (\frac {3 (-4+x)}{x}\right )\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.72, size = 103, normalized size = 3.55 \begin {gather*} e^{\left (2 \, x\right )} \log \left (\frac {3 \, {\left (x - 4\right )}}{x}\right )^{2} + x^{2} + {\left (x^{2} + 10 \, x + 25\right )} e^{\left (2 \, x\right )} + 2 \, {\left (x^{2} + 5 \, x\right )} e^{x} + 2 \, {\left ({\left (x + 5\right )} e^{x} - e^{x} \log \left (\frac {3 \, {\left (x - 4\right )}}{x}\right ) + x\right )} e^{\left (e^{\left (2 \, x\right )}\right )} - 2 \, {\left ({\left (x + 5\right )} e^{\left (2 \, x\right )} + x e^{x}\right )} \log \left (\frac {3 \, {\left (x - 4\right )}}{x}\right ) + e^{\left (2 \, e^{\left (2 \, x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left ({\left (x^{2} - 4 \, x\right )} e^{\left (2 \, x\right )} \log \left (\frac {3 \, {\left (x - 4\right )}}{x}\right )^{2} + x^{3} - 4 \, x^{2} + {\left (x^{4} + 7 \, x^{3} - 14 \, x^{2} - 124 \, x - 20\right )} e^{\left (2 \, x\right )} + 2 \, {\left (x^{2} - 4 \, x\right )} e^{\left (2 \, x + 2 \, e^{\left (2 \, x\right )}\right )} + {\left (x^{4} + 3 \, x^{3} - 23 \, x^{2} - 24 \, x\right )} e^{x} + {\left (x^{2} + 2 \, {\left (x^{3} + x^{2} - 20 \, x\right )} e^{\left (3 \, x\right )} + 2 \, {\left (x^{3} - 4 \, x^{2}\right )} e^{\left (2 \, x\right )} + {\left (x^{3} + 2 \, x^{2} - 24 \, x - 4\right )} e^{x} - {\left (2 \, {\left (x^{2} - 4 \, x\right )} e^{\left (3 \, x\right )} + {\left (x^{2} - 4 \, x\right )} e^{x}\right )} \log \left (\frac {3 \, {\left (x - 4\right )}}{x}\right ) - 4 \, x\right )} e^{\left (e^{\left (2 \, x\right )}\right )} - {\left ({\left (2 \, x^{3} + 3 \, x^{2} - 44 \, x - 4\right )} e^{\left (2 \, x\right )} + {\left (x^{3} - 3 \, x^{2} - 4 \, x\right )} e^{x}\right )} \log \left (\frac {3 \, {\left (x - 4\right )}}{x}\right )\right )}}{x^{2} - 4 \, x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.65, size = 1246, normalized size = 42.97
method | result | size |
risch | \(i \pi x \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x}\right )^{3} {\mathrm e}^{2 x}+i \pi x \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x}\right )^{3} {\mathrm e}^{x}+\frac {{\mathrm e}^{2 x} \pi ^{2} \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (x -4\right )\right )^{2} \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x}\right )^{3}}{2}-{\mathrm e}^{2 x} \pi ^{2} \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (x -4\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x}\right )^{4}-\frac {{\mathrm e}^{2 x} \pi ^{2} \mathrm {csgn}\left (\frac {i}{x}\right )^{2} \mathrm {csgn}\left (i \left (x -4\right )\right )^{2} \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x}\right )^{2}}{4}-\frac {{\mathrm e}^{2 x} \pi ^{2} \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x}\right )^{6}}{4}+2 x \,{\mathrm e}^{x} \ln \relax (x )+25 \,{\mathrm e}^{2 x}+x^{2}+{\mathrm e}^{2 x} x^{2}+10 x \,{\mathrm e}^{2 x}+2 \,{\mathrm e}^{x} x^{2}+10 \,{\mathrm e}^{x} x -\frac {{\mathrm e}^{2 x} \pi ^{2} \mathrm {csgn}\left (\frac {i}{x}\right )^{2} \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x}\right )^{4}}{4}+\frac {{\mathrm e}^{2 x} \pi ^{2} \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x}\right )^{5}}{2}-\frac {{\mathrm e}^{2 x} \pi ^{2} \mathrm {csgn}\left (i \left (x -4\right )\right )^{2} \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x}\right )^{4}}{4}+\frac {{\mathrm e}^{2 x} \pi ^{2} \mathrm {csgn}\left (i \left (x -4\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x}\right )^{5}}{2}+5 i \pi \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x}\right )^{3} {\mathrm e}^{2 x}+\ln \relax (x )^{2} {\mathrm e}^{2 x}-2 x \ln \relax (3) {\mathrm e}^{x}-10 \ln \relax (3) {\mathrm e}^{2 x}+\left (2 x +i \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (x -4\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x}\right ) {\mathrm e}^{x}-i \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x}\right )^{2} {\mathrm e}^{x}-i \pi \,\mathrm {csgn}\left (i \left (x -4\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x}\right )^{2} {\mathrm e}^{x}+i \pi \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x}\right )^{3} {\mathrm e}^{x}-2 \ln \relax (3) {\mathrm e}^{x}+2 \,{\mathrm e}^{x} x +10 \,{\mathrm e}^{x}+2 \,{\mathrm e}^{x} \ln \relax (x )-2 \,{\mathrm e}^{x} \ln \left (x -4\right )\right ) {\mathrm e}^{{\mathrm e}^{2 x}}+\left (-2 \,{\mathrm e}^{2 x} \ln \relax (x )-i \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (x -4\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x}\right ) {\mathrm e}^{2 x}+i \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x}\right )^{2} {\mathrm e}^{2 x}+i \pi \,\mathrm {csgn}\left (i \left (x -4\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x}\right )^{2} {\mathrm e}^{2 x}-i \pi \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x}\right )^{3} {\mathrm e}^{2 x}+2 \ln \relax (3) {\mathrm e}^{2 x}-2 x \,{\mathrm e}^{2 x}-2 \,{\mathrm e}^{x} x -10 \,{\mathrm e}^{2 x}\right ) \ln \left (x -4\right )+{\mathrm e}^{2 \,{\mathrm e}^{2 x}}+i {\mathrm e}^{2 x} \pi \ln \relax (3) \mathrm {csgn}\left (i \left (x -4\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x}\right )^{2}-i \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x}\right )^{2} {\mathrm e}^{2 x} \ln \relax (x )-i \pi \,\mathrm {csgn}\left (i \left (x -4\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x}\right )^{2} {\mathrm e}^{2 x} \ln \relax (x )-i \pi x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x}\right )^{2} {\mathrm e}^{2 x}-i \pi x \,\mathrm {csgn}\left (i \left (x -4\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x}\right )^{2} {\mathrm e}^{2 x}-i \pi x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x}\right )^{2} {\mathrm e}^{x}-i \pi x \,\mathrm {csgn}\left (i \left (x -4\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x}\right )^{2} {\mathrm e}^{x}+\ln \relax (3)^{2} {\mathrm e}^{2 x}+10 \,{\mathrm e}^{2 x} \ln \relax (x )+{\mathrm e}^{2 x} \ln \left (x -4\right )^{2}+5 i \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (x -4\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x}\right ) {\mathrm e}^{2 x}+i {\mathrm e}^{2 x} \pi \ln \relax (3) \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x}\right )^{2}-2 \ln \relax (3) {\mathrm e}^{2 x} x -i {\mathrm e}^{2 x} \pi \ln \relax (3) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x}\right )^{3}+\frac {{\mathrm e}^{2 x} \pi ^{2} \mathrm {csgn}\left (\frac {i}{x}\right )^{2} \mathrm {csgn}\left (i \left (x -4\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x}\right )^{3}}{2}-5 i \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x}\right )^{2} {\mathrm e}^{2 x}-5 i \pi \,\mathrm {csgn}\left (i \left (x -4\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x}\right )^{2} {\mathrm e}^{2 x}+i \pi \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x}\right )^{3} {\mathrm e}^{2 x} \ln \relax (x )-2 \ln \relax (3) {\mathrm e}^{2 x} \ln \relax (x )+2 x \,{\mathrm e}^{2 x} \ln \relax (x )-i {\mathrm e}^{2 x} \pi \ln \relax (3) \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (x -4\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x}\right )+i \pi x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (x -4\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x}\right ) {\mathrm e}^{x}+i \pi x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (x -4\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x}\right ) {\mathrm e}^{2 x}+i \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (x -4\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x}\right ) {\mathrm e}^{2 x} \ln \relax (x )\) | \(1246\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} e^{\left (2 \, x\right )} \log \left (x - 4\right )^{2} + 2 \, x e^{x} \log \relax (x) + x^{2} + {\left (x^{2} - 2 \, x {\left (\log \relax (3) - 5\right )} + \log \relax (3)^{2} + 2 \, {\left (x - \log \relax (3) + 5\right )} \log \relax (x) + \log \relax (x)^{2} - 10 \, \log \relax (3) + 25\right )} e^{\left (2 \, x\right )} + 2 \, {\left ({\left (x - \log \relax (3) + \log \relax (x) + 5\right )} e^{x} - e^{x} \log \left (x - 4\right ) + x\right )} e^{\left (e^{\left (2 \, x\right )}\right )} + 48 \, e^{4} E_{1}\left (-x + 4\right ) - 2 \, {\left ({\left (x - \log \relax (3) + \log \relax (x) + 5\right )} e^{\left (2 \, x\right )} + x e^{x}\right )} \log \left (x - 4\right ) + e^{\left (2 \, e^{\left (2 \, x\right )}\right )} + 2 \, \int \frac {{\left (x^{3} - x^{2} {\left (\log \relax (3) - 3\right )} + x {\left (3 \, \log \relax (3) - 23\right )} + 4 \, \log \relax (3) + 4\right )} e^{x}}{x - 4}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {{\mathrm {e}}^x\,\left (-2\,x^4-6\,x^3+46\,x^2+48\,x\right )+{\mathrm {e}}^{{\mathrm {e}}^{2\,x}}\,\left (8\,x-{\mathrm {e}}^{3\,x}\,\left (4\,x^3+4\,x^2-80\,x\right )-\ln \left (\frac {3\,x-12}{x}\right )\,\left ({\mathrm {e}}^{3\,x}\,\left (16\,x-4\,x^2\right )+{\mathrm {e}}^x\,\left (8\,x-2\,x^2\right )\right )+{\mathrm {e}}^{2\,x}\,\left (16\,x^2-4\,x^3\right )-2\,x^2+{\mathrm {e}}^x\,\left (-2\,x^3-4\,x^2+48\,x+8\right )\right )+{\mathrm {e}}^{2\,x}\,\left (-2\,x^4-14\,x^3+28\,x^2+248\,x+40\right )-\ln \left (\frac {3\,x-12}{x}\right )\,\left ({\mathrm {e}}^{2\,x}\,\left (-4\,x^3-6\,x^2+88\,x+8\right )+{\mathrm {e}}^x\,\left (-2\,x^3+6\,x^2+8\,x\right )\right )+8\,x^2-2\,x^3+{\mathrm {e}}^{2\,{\mathrm {e}}^{2\,x}}\,{\mathrm {e}}^{2\,x}\,\left (16\,x-4\,x^2\right )+{\mathrm {e}}^{2\,x}\,{\ln \left (\frac {3\,x-12}{x}\right )}^2\,\left (8\,x-2\,x^2\right )}{4\,x-x^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 141.15, size = 116, normalized size = 4.00 \begin {gather*} x^{2} + \left (2 x^{2} - 2 x \log {\left (\frac {3 x - 12}{x} \right )} + 10 x\right ) e^{x} + \left (2 x e^{x} + 2 x - 2 e^{x} \log {\left (\frac {3 x - 12}{x} \right )} + 10 e^{x}\right ) e^{e^{2 x}} + \left (x^{2} - 2 x \log {\left (\frac {3 x - 12}{x} \right )} + 10 x + \log {\left (\frac {3 x - 12}{x} \right )}^{2} - 10 \log {\left (\frac {3 x - 12}{x} \right )} + 25\right ) e^{2 x} + e^{2 e^{2 x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________