3.20.83 \(\int \frac {-2 x+2 e^{2 x} x+e^x (2-2 x^2)+(e^{2 x} (4 x+2 x^2)+e^x (-4 x^2-2 x^3)) \log (x)+(-2 x+e^x (1+x)+(-2 e^x x^2+e^{2 x} (x+x^2)) \log (x)) \log (\frac {2}{x^2+2 e^x x^3 \log (x)+e^{2 x} x^4 \log ^2(x)})}{(1+e^x x \log (x)) \log ^2(\frac {2}{x^2+2 e^x x^3 \log (x)+e^{2 x} x^4 \log ^2(x)})} \, dx\)

Optimal. Leaf size=27 \[ \frac {\left (e^x-x\right ) x}{\log \left (\frac {2}{\left (x+e^x x^2 \log (x)\right )^2}\right )} \]

________________________________________________________________________________________

Rubi [F]  time = 9.81, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2 x+2 e^{2 x} x+e^x \left (2-2 x^2\right )+\left (e^{2 x} \left (4 x+2 x^2\right )+e^x \left (-4 x^2-2 x^3\right )\right ) \log (x)+\left (-2 x+e^x (1+x)+\left (-2 e^x x^2+e^{2 x} \left (x+x^2\right )\right ) \log (x)\right ) \log \left (\frac {2}{x^2+2 e^x x^3 \log (x)+e^{2 x} x^4 \log ^2(x)}\right )}{\left (1+e^x x \log (x)\right ) \log ^2\left (\frac {2}{x^2+2 e^x x^3 \log (x)+e^{2 x} x^4 \log ^2(x)}\right )} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[(-2*x + 2*E^(2*x)*x + E^x*(2 - 2*x^2) + (E^(2*x)*(4*x + 2*x^2) + E^x*(-4*x^2 - 2*x^3))*Log[x] + (-2*x + E^
x*(1 + x) + (-2*E^x*x^2 + E^(2*x)*(x + x^2))*Log[x])*Log[2/(x^2 + 2*E^x*x^3*Log[x] + E^(2*x)*x^4*Log[x]^2)])/(
(1 + E^x*x*Log[x])*Log[2/(x^2 + 2*E^x*x^3*Log[x] + E^(2*x)*x^4*Log[x]^2)]^2),x]

[Out]

4*Defer[Int][E^x/Log[2/(x^2*(1 + E^x*x*Log[x])^2)]^2, x] - 4*Defer[Int][x/Log[2/(x^2*(1 + E^x*x*Log[x])^2)]^2,
 x] + 2*Defer[Int][(E^x*x)/Log[2/(x^2*(1 + E^x*x*Log[x])^2)]^2, x] - 2*Defer[Int][x^2/Log[2/(x^2*(1 + E^x*x*Lo
g[x])^2)]^2, x] - 2*Defer[Int][1/(x*Log[x]^2*Log[2/(x^2*(1 + E^x*x*Log[x])^2)]^2), x] - 2*Defer[Int][1/(Log[x]
*Log[2/(x^2*(1 + E^x*x*Log[x])^2)]^2), x] + 2*Defer[Int][E^x/(Log[x]*Log[2/(x^2*(1 + E^x*x*Log[x])^2)]^2), x]
- 2*Defer[Int][1/(x*Log[x]*Log[2/(x^2*(1 + E^x*x*Log[x])^2)]^2), x] - 2*Defer[Int][x/(Log[x]*Log[2/(x^2*(1 + E
^x*x*Log[x])^2)]^2), x] + 2*Defer[Int][x/((1 + E^x*x*Log[x])*Log[2/(x^2*(1 + E^x*x*Log[x])^2)]^2), x] + 2*Defe
r[Int][x^2/((1 + E^x*x*Log[x])*Log[2/(x^2*(1 + E^x*x*Log[x])^2)]^2), x] + 2*Defer[Int][1/(x*Log[x]^2*(1 + E^x*
x*Log[x])*Log[2/(x^2*(1 + E^x*x*Log[x])^2)]^2), x] + 2*Defer[Int][1/(Log[x]*(1 + E^x*x*Log[x])*Log[2/(x^2*(1 +
 E^x*x*Log[x])^2)]^2), x] + 2*Defer[Int][1/(x*Log[x]*(1 + E^x*x*Log[x])*Log[2/(x^2*(1 + E^x*x*Log[x])^2)]^2),
x] + 2*Defer[Int][x/(Log[x]*(1 + E^x*x*Log[x])*Log[2/(x^2*(1 + E^x*x*Log[x])^2)]^2), x] + Defer[Int][E^x/Log[2
/(x^2*(1 + E^x*x*Log[x])^2)], x] - 2*Defer[Int][x/Log[2/(x^2*(1 + E^x*x*Log[x])^2)], x] + Defer[Int][(E^x*x)/L
og[2/(x^2*(1 + E^x*x*Log[x])^2)], x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2 x+2 e^{2 x} x-2 e^x \left (-1+x^2\right )+2 e^x \left (e^x-x\right ) x (2+x) \log (x)+\left (-2 x+e^x (1+x)\right ) \left (1+e^x x \log (x)\right ) \log \left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )}{\left (1+e^x x \log (x)\right ) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx\\ &=\int \left (\frac {2 \left (1+\log (x)+x \log (x)+x^2 \log (x)+x^2 \log ^2(x)+x^3 \log ^2(x)\right )}{x \log ^2(x) \left (1+e^x x \log (x)\right ) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )}+\frac {e^x \left (2+4 \log (x)+2 x \log (x)+\log (x) \log \left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )+x \log (x) \log \left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )\right )}{\log (x) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )}-\frac {2 \left (1+\log (x)+x \log (x)+x^2 \log (x)+2 x^2 \log ^2(x)+x^3 \log ^2(x)+x^2 \log ^2(x) \log \left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )\right )}{x \log ^2(x) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )}\right ) \, dx\\ &=2 \int \frac {1+\log (x)+x \log (x)+x^2 \log (x)+x^2 \log ^2(x)+x^3 \log ^2(x)}{x \log ^2(x) \left (1+e^x x \log (x)\right ) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx-2 \int \frac {1+\log (x)+x \log (x)+x^2 \log (x)+2 x^2 \log ^2(x)+x^3 \log ^2(x)+x^2 \log ^2(x) \log \left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )}{x \log ^2(x) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx+\int \frac {e^x \left (2+4 \log (x)+2 x \log (x)+\log (x) \log \left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )+x \log (x) \log \left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )\right )}{\log (x) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx\\ &=2 \int \frac {1+\left (1+x+x^2\right ) \log (x)+x^2 (1+x) \log ^2(x)}{x \log ^2(x) \left (1+e^x x \log (x)\right ) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx-2 \int \frac {1+\left (1+x+x^2\right ) \log (x)+x^2 \log ^2(x) \left (2+x+\log \left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )\right )}{x \log ^2(x) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx+\int \frac {e^x \left (2+\log (x) \left (2 (2+x)+(1+x) \log \left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )\right )\right )}{\log (x) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx\\ &=2 \int \left (\frac {x}{\left (1+e^x x \log (x)\right ) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )}+\frac {x^2}{\left (1+e^x x \log (x)\right ) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )}+\frac {1}{x \log ^2(x) \left (1+e^x x \log (x)\right ) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )}+\frac {1}{\log (x) \left (1+e^x x \log (x)\right ) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )}+\frac {1}{x \log (x) \left (1+e^x x \log (x)\right ) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )}+\frac {x}{\log (x) \left (1+e^x x \log (x)\right ) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )}\right ) \, dx-2 \int \left (\frac {1+\log (x)+x \log (x)+x^2 \log (x)+2 x^2 \log ^2(x)+x^3 \log ^2(x)}{x \log ^2(x) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )}+\frac {x}{\log \left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )}\right ) \, dx+\int \left (\frac {2 e^x (1+2 \log (x)+x \log (x))}{\log (x) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )}+\frac {e^x (1+x)}{\log \left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )}\right ) \, dx\\ &=2 \int \frac {e^x (1+2 \log (x)+x \log (x))}{\log (x) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx+2 \int \frac {x}{\left (1+e^x x \log (x)\right ) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx+2 \int \frac {x^2}{\left (1+e^x x \log (x)\right ) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx+2 \int \frac {1}{x \log ^2(x) \left (1+e^x x \log (x)\right ) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx+2 \int \frac {1}{\log (x) \left (1+e^x x \log (x)\right ) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx+2 \int \frac {1}{x \log (x) \left (1+e^x x \log (x)\right ) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx+2 \int \frac {x}{\log (x) \left (1+e^x x \log (x)\right ) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx-2 \int \frac {1+\log (x)+x \log (x)+x^2 \log (x)+2 x^2 \log ^2(x)+x^3 \log ^2(x)}{x \log ^2(x) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx-2 \int \frac {x}{\log \left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx+\int \frac {e^x (1+x)}{\log \left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx\\ &=2 \int \left (\frac {2 e^x}{\log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )}+\frac {e^x x}{\log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )}+\frac {e^x}{\log (x) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )}\right ) \, dx+2 \int \frac {x}{\left (1+e^x x \log (x)\right ) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx+2 \int \frac {x^2}{\left (1+e^x x \log (x)\right ) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx+2 \int \frac {1}{x \log ^2(x) \left (1+e^x x \log (x)\right ) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx+2 \int \frac {1}{\log (x) \left (1+e^x x \log (x)\right ) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx+2 \int \frac {1}{x \log (x) \left (1+e^x x \log (x)\right ) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx+2 \int \frac {x}{\log (x) \left (1+e^x x \log (x)\right ) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx-2 \int \frac {1+\left (1+x+x^2\right ) \log (x)+x^2 (2+x) \log ^2(x)}{x \log ^2(x) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx-2 \int \frac {x}{\log \left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx+\int \left (\frac {e^x}{\log \left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )}+\frac {e^x x}{\log \left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )}\right ) \, dx\\ &=-\left (2 \int \left (\frac {2 x}{\log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )}+\frac {x^2}{\log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )}+\frac {1}{x \log ^2(x) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )}+\frac {1}{\log (x) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )}+\frac {1}{x \log (x) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )}+\frac {x}{\log (x) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )}\right ) \, dx\right )+2 \int \frac {e^x x}{\log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx+2 \int \frac {e^x}{\log (x) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx+2 \int \frac {x}{\left (1+e^x x \log (x)\right ) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx+2 \int \frac {x^2}{\left (1+e^x x \log (x)\right ) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx+2 \int \frac {1}{x \log ^2(x) \left (1+e^x x \log (x)\right ) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx+2 \int \frac {1}{\log (x) \left (1+e^x x \log (x)\right ) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx+2 \int \frac {1}{x \log (x) \left (1+e^x x \log (x)\right ) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx+2 \int \frac {x}{\log (x) \left (1+e^x x \log (x)\right ) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx-2 \int \frac {x}{\log \left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx+4 \int \frac {e^x}{\log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx+\int \frac {e^x}{\log \left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx+\int \frac {e^x x}{\log \left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx\\ &=2 \int \frac {e^x x}{\log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx-2 \int \frac {x^2}{\log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx-2 \int \frac {1}{x \log ^2(x) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx-2 \int \frac {1}{\log (x) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx+2 \int \frac {e^x}{\log (x) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx-2 \int \frac {1}{x \log (x) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx-2 \int \frac {x}{\log (x) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx+2 \int \frac {x}{\left (1+e^x x \log (x)\right ) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx+2 \int \frac {x^2}{\left (1+e^x x \log (x)\right ) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx+2 \int \frac {1}{x \log ^2(x) \left (1+e^x x \log (x)\right ) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx+2 \int \frac {1}{\log (x) \left (1+e^x x \log (x)\right ) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx+2 \int \frac {1}{x \log (x) \left (1+e^x x \log (x)\right ) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx+2 \int \frac {x}{\log (x) \left (1+e^x x \log (x)\right ) \log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx-2 \int \frac {x}{\log \left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx+4 \int \frac {e^x}{\log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx-4 \int \frac {x}{\log ^2\left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx+\int \frac {e^x}{\log \left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx+\int \frac {e^x x}{\log \left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \, dx\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.17, size = 28, normalized size = 1.04 \begin {gather*} \frac {\left (e^x-x\right ) x}{\log \left (\frac {2}{x^2 \left (1+e^x x \log (x)\right )^2}\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-2*x + 2*E^(2*x)*x + E^x*(2 - 2*x^2) + (E^(2*x)*(4*x + 2*x^2) + E^x*(-4*x^2 - 2*x^3))*Log[x] + (-2*
x + E^x*(1 + x) + (-2*E^x*x^2 + E^(2*x)*(x + x^2))*Log[x])*Log[2/(x^2 + 2*E^x*x^3*Log[x] + E^(2*x)*x^4*Log[x]^
2)])/((1 + E^x*x*Log[x])*Log[2/(x^2 + 2*E^x*x^3*Log[x] + E^(2*x)*x^4*Log[x]^2)]^2),x]

[Out]

((E^x - x)*x)/Log[2/(x^2*(1 + E^x*x*Log[x])^2)]

________________________________________________________________________________________

fricas [A]  time = 0.56, size = 43, normalized size = 1.59 \begin {gather*} -\frac {x^{2} - x e^{x}}{\log \left (\frac {2}{x^{4} e^{\left (2 \, x\right )} \log \relax (x)^{2} + 2 \, x^{3} e^{x} \log \relax (x) + x^{2}}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((((x^2+x)*exp(x)^2-2*exp(x)*x^2)*log(x)+(x+1)*exp(x)-2*x)*log(2/(x^4*exp(x)^2*log(x)^2+2*x^3*exp(x)
*log(x)+x^2))+((2*x^2+4*x)*exp(x)^2+(-2*x^3-4*x^2)*exp(x))*log(x)+2*x*exp(x)^2+(-2*x^2+2)*exp(x)-2*x)/(x*exp(x
)*log(x)+1)/log(2/(x^4*exp(x)^2*log(x)^2+2*x^3*exp(x)*log(x)+x^2))^2,x, algorithm="fricas")

[Out]

-(x^2 - x*e^x)/log(2/(x^4*e^(2*x)*log(x)^2 + 2*x^3*e^x*log(x) + x^2))

________________________________________________________________________________________

giac [A]  time = 6.25, size = 44, normalized size = 1.63 \begin {gather*} -\frac {x^{2} - x e^{x}}{\log \relax (2) - \log \left (x^{2} e^{\left (2 \, x\right )} \log \relax (x)^{2} + 2 \, x e^{x} \log \relax (x) + 1\right ) - 2 \, \log \relax (x)} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((((x^2+x)*exp(x)^2-2*exp(x)*x^2)*log(x)+(x+1)*exp(x)-2*x)*log(2/(x^4*exp(x)^2*log(x)^2+2*x^3*exp(x)
*log(x)+x^2))+((2*x^2+4*x)*exp(x)^2+(-2*x^3-4*x^2)*exp(x))*log(x)+2*x*exp(x)^2+(-2*x^2+2)*exp(x)-2*x)/(x*exp(x
)*log(x)+1)/log(2/(x^4*exp(x)^2*log(x)^2+2*x^3*exp(x)*log(x)+x^2))^2,x, algorithm="giac")

[Out]

-(x^2 - x*e^x)/(log(2) - log(x^2*e^(2*x)*log(x)^2 + 2*x*e^x*log(x) + 1) - 2*log(x))

________________________________________________________________________________________

maple [C]  time = 0.55, size = 285, normalized size = 10.56




method result size



risch \(\frac {2 i \left (x -{\mathrm e}^{x}\right ) x}{\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}-\pi \,\mathrm {csgn}\left (\frac {i}{x^{2}}\right ) \mathrm {csgn}\left (\frac {i}{\left (x \,{\mathrm e}^{x} \ln \relax (x )+1\right )^{2}}\right ) \mathrm {csgn}\left (\frac {i}{x^{2} \left (x \,{\mathrm e}^{x} \ln \relax (x )+1\right )^{2}}\right )+\pi \,\mathrm {csgn}\left (\frac {i}{x^{2}}\right ) \mathrm {csgn}\left (\frac {i}{x^{2} \left (x \,{\mathrm e}^{x} \ln \relax (x )+1\right )^{2}}\right )^{2}+\pi \,\mathrm {csgn}\left (\frac {i}{\left (x \,{\mathrm e}^{x} \ln \relax (x )+1\right )^{2}}\right ) \mathrm {csgn}\left (\frac {i}{x^{2} \left (x \,{\mathrm e}^{x} \ln \relax (x )+1\right )^{2}}\right )^{2}+\pi \mathrm {csgn}\left (i \left (x \,{\mathrm e}^{x} \ln \relax (x )+1\right )\right )^{2} \mathrm {csgn}\left (i \left (x \,{\mathrm e}^{x} \ln \relax (x )+1\right )^{2}\right )-2 \pi \,\mathrm {csgn}\left (i \left (x \,{\mathrm e}^{x} \ln \relax (x )+1\right )\right ) \mathrm {csgn}\left (i \left (x \,{\mathrm e}^{x} \ln \relax (x )+1\right )^{2}\right )^{2}+\pi \mathrm {csgn}\left (i \left (x \,{\mathrm e}^{x} \ln \relax (x )+1\right )^{2}\right )^{3}-\pi \mathrm {csgn}\left (\frac {i}{x^{2} \left (x \,{\mathrm e}^{x} \ln \relax (x )+1\right )^{2}}\right )^{3}+4 i \ln \left (x \,{\mathrm e}^{x} \ln \relax (x )+1\right )+4 i \ln \relax (x )-2 i \ln \relax (2)}\) \(285\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((((x^2+x)*exp(x)^2-2*exp(x)*x^2)*ln(x)+(x+1)*exp(x)-2*x)*ln(2/(x^4*exp(x)^2*ln(x)^2+2*x^3*exp(x)*ln(x)+x^
2))+((2*x^2+4*x)*exp(x)^2+(-2*x^3-4*x^2)*exp(x))*ln(x)+2*x*exp(x)^2+(-2*x^2+2)*exp(x)-2*x)/(x*exp(x)*ln(x)+1)/
ln(2/(x^4*exp(x)^2*ln(x)^2+2*x^3*exp(x)*ln(x)+x^2))^2,x,method=_RETURNVERBOSE)

[Out]

2*I*(x-exp(x))*x/(Pi*csgn(I*x)^2*csgn(I*x^2)-2*Pi*csgn(I*x)*csgn(I*x^2)^2+Pi*csgn(I*x^2)^3-Pi*csgn(I/x^2)*csgn
(I/(x*exp(x)*ln(x)+1)^2)*csgn(I/x^2/(x*exp(x)*ln(x)+1)^2)+Pi*csgn(I/x^2)*csgn(I/x^2/(x*exp(x)*ln(x)+1)^2)^2+Pi
*csgn(I/(x*exp(x)*ln(x)+1)^2)*csgn(I/x^2/(x*exp(x)*ln(x)+1)^2)^2+Pi*csgn(I*(x*exp(x)*ln(x)+1))^2*csgn(I*(x*exp
(x)*ln(x)+1)^2)-2*Pi*csgn(I*(x*exp(x)*ln(x)+1))*csgn(I*(x*exp(x)*ln(x)+1)^2)^2+Pi*csgn(I*(x*exp(x)*ln(x)+1)^2)
^3-Pi*csgn(I/x^2/(x*exp(x)*ln(x)+1)^2)^3+4*I*ln(x*exp(x)*ln(x)+1)+4*I*ln(x)-2*I*ln(2))

________________________________________________________________________________________

maxima [A]  time = 0.68, size = 31, normalized size = 1.15 \begin {gather*} -\frac {x^{2} - x e^{x}}{\log \relax (2) - 2 \, \log \left (x e^{x} \log \relax (x) + 1\right ) - 2 \, \log \relax (x)} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((((x^2+x)*exp(x)^2-2*exp(x)*x^2)*log(x)+(x+1)*exp(x)-2*x)*log(2/(x^4*exp(x)^2*log(x)^2+2*x^3*exp(x)
*log(x)+x^2))+((2*x^2+4*x)*exp(x)^2+(-2*x^3-4*x^2)*exp(x))*log(x)+2*x*exp(x)^2+(-2*x^2+2)*exp(x)-2*x)/(x*exp(x
)*log(x)+1)/log(2/(x^4*exp(x)^2*log(x)^2+2*x^3*exp(x)*log(x)+x^2))^2,x, algorithm="maxima")

[Out]

-(x^2 - x*e^x)/(log(2) - 2*log(x*e^x*log(x) + 1) - 2*log(x))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {2\,x-2\,x\,{\mathrm {e}}^{2\,x}-\ln \relax (x)\,\left ({\mathrm {e}}^{2\,x}\,\left (2\,x^2+4\,x\right )-{\mathrm {e}}^x\,\left (2\,x^3+4\,x^2\right )\right )+\ln \left (\frac {2}{x^2+x^4\,{\mathrm {e}}^{2\,x}\,{\ln \relax (x)}^2+2\,x^3\,{\mathrm {e}}^x\,\ln \relax (x)}\right )\,\left (2\,x+\ln \relax (x)\,\left (2\,x^2\,{\mathrm {e}}^x-{\mathrm {e}}^{2\,x}\,\left (x^2+x\right )\right )-{\mathrm {e}}^x\,\left (x+1\right )\right )+{\mathrm {e}}^x\,\left (2\,x^2-2\right )}{{\ln \left (\frac {2}{x^2+x^4\,{\mathrm {e}}^{2\,x}\,{\ln \relax (x)}^2+2\,x^3\,{\mathrm {e}}^x\,\ln \relax (x)}\right )}^2\,\left (x\,{\mathrm {e}}^x\,\ln \relax (x)+1\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(2*x - 2*x*exp(2*x) - log(x)*(exp(2*x)*(4*x + 2*x^2) - exp(x)*(4*x^2 + 2*x^3)) + log(2/(x^2 + x^4*exp(2*x
)*log(x)^2 + 2*x^3*exp(x)*log(x)))*(2*x + log(x)*(2*x^2*exp(x) - exp(2*x)*(x + x^2)) - exp(x)*(x + 1)) + exp(x
)*(2*x^2 - 2))/(log(2/(x^2 + x^4*exp(2*x)*log(x)^2 + 2*x^3*exp(x)*log(x)))^2*(x*exp(x)*log(x) + 1)),x)

[Out]

int(-(2*x - 2*x*exp(2*x) - log(x)*(exp(2*x)*(4*x + 2*x^2) - exp(x)*(4*x^2 + 2*x^3)) + log(2/(x^2 + x^4*exp(2*x
)*log(x)^2 + 2*x^3*exp(x)*log(x)))*(2*x + log(x)*(2*x^2*exp(x) - exp(2*x)*(x + x^2)) - exp(x)*(x + 1)) + exp(x
)*(2*x^2 - 2))/(log(2/(x^2 + x^4*exp(2*x)*log(x)^2 + 2*x^3*exp(x)*log(x)))^2*(x*exp(x)*log(x) + 1)), x)

________________________________________________________________________________________

sympy [A]  time = 0.68, size = 39, normalized size = 1.44 \begin {gather*} \frac {- x^{2} + x e^{x}}{\log {\left (\frac {2}{x^{4} e^{2 x} \log {\relax (x )}^{2} + 2 x^{3} e^{x} \log {\relax (x )} + x^{2}} \right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((((x**2+x)*exp(x)**2-2*exp(x)*x**2)*ln(x)+(x+1)*exp(x)-2*x)*ln(2/(x**4*exp(x)**2*ln(x)**2+2*x**3*ex
p(x)*ln(x)+x**2))+((2*x**2+4*x)*exp(x)**2+(-2*x**3-4*x**2)*exp(x))*ln(x)+2*x*exp(x)**2+(-2*x**2+2)*exp(x)-2*x)
/(x*exp(x)*ln(x)+1)/ln(2/(x**4*exp(x)**2*ln(x)**2+2*x**3*exp(x)*ln(x)+x**2))**2,x)

[Out]

(-x**2 + x*exp(x))/log(2/(x**4*exp(2*x)*log(x)**2 + 2*x**3*exp(x)*log(x) + x**2))

________________________________________________________________________________________