Optimal. Leaf size=23 \[ \frac {x+e^{e^4+x} (1-x) (-1+x) x}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 32, normalized size of antiderivative = 1.39, number of steps used = 6, number of rules used = 3, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {2196, 2194, 2176} \begin {gather*} -e^{x+e^4} x^2+2 e^{x+e^4} x-e^{x+e^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (e^{e^4+x}-e^{e^4+x} x^2\right ) \, dx\\ &=\int e^{e^4+x} \, dx-\int e^{e^4+x} x^2 \, dx\\ &=e^{e^4+x}-e^{e^4+x} x^2+2 \int e^{e^4+x} x \, dx\\ &=e^{e^4+x}+2 e^{e^4+x} x-e^{e^4+x} x^2-2 \int e^{e^4+x} \, dx\\ &=-e^{e^4+x}+2 e^{e^4+x} x-e^{e^4+x} x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 14, normalized size = 0.61 \begin {gather*} -e^{e^4+x} (-1+x)^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 15, normalized size = 0.65 \begin {gather*} -{\left (x^{2} - 2 \, x + 1\right )} e^{\left (x + e^{4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.53, size = 15, normalized size = 0.65 \begin {gather*} -{\left (x^{2} - 2 \, x + 1\right )} e^{\left (x + e^{4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 13, normalized size = 0.57
method | result | size |
gosper | \(-\left (x -1\right )^{2} {\mathrm e}^{x +{\mathrm e}^{4}}\) | \(13\) |
risch | \(\left (-x^{2}+2 x -1\right ) {\mathrm e}^{x +{\mathrm e}^{4}}\) | \(17\) |
norman | \(2 x \,{\mathrm e}^{x +{\mathrm e}^{4}}-x^{2} {\mathrm e}^{x +{\mathrm e}^{4}}-{\mathrm e}^{x +{\mathrm e}^{4}}\) | \(27\) |
meijerg | \({\mathrm e}^{{\mathrm e}^{4}} \left (2-\frac {\left (3 x^{2}-6 x +6\right ) {\mathrm e}^{x}}{3}\right )-{\mathrm e}^{{\mathrm e}^{4}} \left (1-{\mathrm e}^{x}\right )\) | \(33\) |
derivativedivides | \(-{\mathrm e}^{x +{\mathrm e}^{4}} \left (x +{\mathrm e}^{4}\right )^{2}+2 \left (x +{\mathrm e}^{4}\right ) {\mathrm e}^{x +{\mathrm e}^{4}}-{\mathrm e}^{x +{\mathrm e}^{4}}-{\mathrm e}^{x +{\mathrm e}^{4}} {\mathrm e}^{8}+2 \,{\mathrm e}^{4} \left (\left (x +{\mathrm e}^{4}\right ) {\mathrm e}^{x +{\mathrm e}^{4}}-{\mathrm e}^{x +{\mathrm e}^{4}}\right )\) | \(66\) |
default | \(-{\mathrm e}^{x +{\mathrm e}^{4}} \left (x +{\mathrm e}^{4}\right )^{2}+2 \left (x +{\mathrm e}^{4}\right ) {\mathrm e}^{x +{\mathrm e}^{4}}-{\mathrm e}^{x +{\mathrm e}^{4}}-{\mathrm e}^{x +{\mathrm e}^{4}} {\mathrm e}^{8}+2 \,{\mathrm e}^{4} \left (\left (x +{\mathrm e}^{4}\right ) {\mathrm e}^{x +{\mathrm e}^{4}}-{\mathrm e}^{x +{\mathrm e}^{4}}\right )\) | \(66\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.34, size = 29, normalized size = 1.26 \begin {gather*} -{\left (x^{2} e^{\left (e^{4}\right )} - 2 \, x e^{\left (e^{4}\right )} + 2 \, e^{\left (e^{4}\right )}\right )} e^{x} + e^{\left (x + e^{4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.06, size = 12, normalized size = 0.52 \begin {gather*} -{\mathrm {e}}^{x+{\mathrm {e}}^4}\,{\left (x-1\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.08, size = 14, normalized size = 0.61 \begin {gather*} \left (- x^{2} + 2 x - 1\right ) e^{x + e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________