Optimal. Leaf size=28 \[ -4-(2-x)^2+x+\frac {x^2}{\log \left (\frac {x}{5+2 x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.20, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-5 x+\left (10 x+4 x^2\right ) \log \left (\frac {x}{5+2 x}\right )+\left (25-4 x^2\right ) \log ^2\left (\frac {x}{5+2 x}\right )}{(5+2 x) \log ^2\left (\frac {x}{5+2 x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (5-2 x-\frac {5 x}{(5+2 x) \log ^2\left (\frac {x}{5+2 x}\right )}+\frac {2 x}{\log \left (\frac {x}{5+2 x}\right )}\right ) \, dx\\ &=5 x-x^2+2 \int \frac {x}{\log \left (\frac {x}{5+2 x}\right )} \, dx-5 \int \frac {x}{(5+2 x) \log ^2\left (\frac {x}{5+2 x}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.57, size = 25, normalized size = 0.89 \begin {gather*} 5 x-x^2+\frac {x^2}{\log \left (\frac {x}{5+2 x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.91, size = 36, normalized size = 1.29 \begin {gather*} \frac {x^{2} - {\left (x^{2} - 5 \, x\right )} \log \left (\frac {x}{2 \, x + 5}\right )}{\log \left (\frac {x}{2 \, x + 5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.27, size = 110, normalized size = 3.93 \begin {gather*} \frac {25 \, {\left (\frac {8 \, x}{2 \, x + 5} - 3\right )}}{4 \, {\left (\frac {4 \, x}{2 \, x + 5} - \frac {4 \, x^{2}}{{\left (2 \, x + 5\right )}^{2}} - 1\right )}} - \frac {25 \, x^{2}}{{\left (2 \, x + 5\right )}^{2} {\left (\frac {4 \, x \log \left (\frac {x}{2 \, x + 5}\right )}{2 \, x + 5} - \frac {4 \, x^{2} \log \left (\frac {x}{2 \, x + 5}\right )}{{\left (2 \, x + 5\right )}^{2}} - \log \left (\frac {x}{2 \, x + 5}\right )\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.33, size = 26, normalized size = 0.93
method | result | size |
risch | \(-x^{2}+5 x +\frac {x^{2}}{\ln \left (\frac {x}{5+2 x}\right )}\) | \(26\) |
norman | \(\frac {x^{2}+5 \ln \left (\frac {x}{5+2 x}\right ) x -\ln \left (\frac {x}{5+2 x}\right ) x^{2}}{\ln \left (\frac {x}{5+2 x}\right )}\) | \(46\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 44, normalized size = 1.57 \begin {gather*} -\frac {x^{2} + {\left (x^{2} - 5 \, x\right )} \log \left (2 \, x + 5\right ) - {\left (x^{2} - 5 \, x\right )} \log \relax (x)}{\log \left (2 \, x + 5\right ) - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.32, size = 25, normalized size = 0.89 \begin {gather*} 5\,x+\frac {x^2}{\ln \left (\frac {x}{2\,x+5}\right )}-x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 17, normalized size = 0.61 \begin {gather*} - x^{2} + \frac {x^{2}}{\log {\left (\frac {x}{2 x + 5} \right )}} + 5 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________