Optimal. Leaf size=17 \[ \log \left (-1+x+\log (x)+\frac {1}{\log \left (\log ^2\left (\frac {3}{x^2}\right )\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 3.65, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4+(1+x) \log \left (\frac {3}{x^2}\right ) \log ^2\left (\log ^2\left (\frac {3}{x^2}\right )\right )}{x \log \left (\frac {3}{x^2}\right ) \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )+\left (\left (-x+x^2\right ) \log \left (\frac {3}{x^2}\right )+x \log \left (\frac {3}{x^2}\right ) \log (x)\right ) \log ^2\left (\log ^2\left (\frac {3}{x^2}\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4+(1+x) \log \left (\frac {3}{x^2}\right ) \log ^2\left (\log ^2\left (\frac {3}{x^2}\right )\right )}{x \log \left (\frac {3}{x^2}\right ) \log \left (\log ^2\left (\frac {3}{x^2}\right )\right ) \left (1+(-1+x+\log (x)) \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )\right )} \, dx\\ &=\int \left (\frac {1+x}{x (-1+x+\log (x))}+\frac {4}{x \log \left (\frac {3}{x^2}\right ) \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )}+\frac {-1-x}{x (-1+x+\log (x)) \left (1-\log \left (\log ^2\left (\frac {3}{x^2}\right )\right )+x \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )+\log (x) \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )\right )}-\frac {4 (-1+x+\log (x))}{x \log \left (\frac {3}{x^2}\right ) \left (1-\log \left (\log ^2\left (\frac {3}{x^2}\right )\right )+x \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )+\log (x) \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )\right )}\right ) \, dx\\ &=4 \int \frac {1}{x \log \left (\frac {3}{x^2}\right ) \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )} \, dx-4 \int \frac {-1+x+\log (x)}{x \log \left (\frac {3}{x^2}\right ) \left (1-\log \left (\log ^2\left (\frac {3}{x^2}\right )\right )+x \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )+\log (x) \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )\right )} \, dx+\int \frac {1+x}{x (-1+x+\log (x))} \, dx+\int \frac {-1-x}{x (-1+x+\log (x)) \left (1-\log \left (\log ^2\left (\frac {3}{x^2}\right )\right )+x \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )+\log (x) \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )\right )} \, dx\\ &=\log (1-x-\log (x))-2 \operatorname {Subst}\left (\int \frac {1}{x \log \left (x^2\right )} \, dx,x,\log \left (\frac {3}{x^2}\right )\right )-4 \int \frac {-1+x+\log (x)}{x \log \left (\frac {3}{x^2}\right ) \left (1+(-1+x+\log (x)) \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )\right )} \, dx+\int \frac {1+x}{x (1-x-\log (x)) \left (1+(-1+x+\log (x)) \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )\right )} \, dx\\ &=\log (1-x-\log (x))-4 \int \left (\frac {1}{\log \left (\frac {3}{x^2}\right ) \left (1-\log \left (\log ^2\left (\frac {3}{x^2}\right )\right )+x \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )+\log (x) \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )\right )}-\frac {1}{x \log \left (\frac {3}{x^2}\right ) \left (1-\log \left (\log ^2\left (\frac {3}{x^2}\right )\right )+x \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )+\log (x) \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )\right )}+\frac {\log (x)}{x \log \left (\frac {3}{x^2}\right ) \left (1-\log \left (\log ^2\left (\frac {3}{x^2}\right )\right )+x \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )+\log (x) \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )\right )}\right ) \, dx+\int \left (-\frac {1}{(-1+x+\log (x)) \left (1-\log \left (\log ^2\left (\frac {3}{x^2}\right )\right )+x \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )+\log (x) \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )\right )}-\frac {1}{x (-1+x+\log (x)) \left (1-\log \left (\log ^2\left (\frac {3}{x^2}\right )\right )+x \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )+\log (x) \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )\right )}\right ) \, dx-\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log \left (\log ^2\left (\frac {3}{x^2}\right )\right )\right )\\ &=\log (1-x-\log (x))-\log \left (\log \left (\log ^2\left (\frac {3}{x^2}\right )\right )\right )-4 \int \frac {1}{\log \left (\frac {3}{x^2}\right ) \left (1-\log \left (\log ^2\left (\frac {3}{x^2}\right )\right )+x \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )+\log (x) \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )\right )} \, dx+4 \int \frac {1}{x \log \left (\frac {3}{x^2}\right ) \left (1-\log \left (\log ^2\left (\frac {3}{x^2}\right )\right )+x \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )+\log (x) \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )\right )} \, dx-4 \int \frac {\log (x)}{x \log \left (\frac {3}{x^2}\right ) \left (1-\log \left (\log ^2\left (\frac {3}{x^2}\right )\right )+x \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )+\log (x) \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )\right )} \, dx-\int \frac {1}{(-1+x+\log (x)) \left (1-\log \left (\log ^2\left (\frac {3}{x^2}\right )\right )+x \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )+\log (x) \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )\right )} \, dx-\int \frac {1}{x (-1+x+\log (x)) \left (1-\log \left (\log ^2\left (\frac {3}{x^2}\right )\right )+x \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )+\log (x) \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )\right )} \, dx\\ &=\log (1-x-\log (x))-\log \left (\log \left (\log ^2\left (\frac {3}{x^2}\right )\right )\right )-4 \int \frac {1}{\log \left (\frac {3}{x^2}\right ) \left (1+(-1+x+\log (x)) \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )\right )} \, dx+4 \int \frac {1}{x \log \left (\frac {3}{x^2}\right ) \left (1+(-1+x+\log (x)) \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )\right )} \, dx-4 \int \frac {\log (x)}{x \log \left (\frac {3}{x^2}\right ) \left (1+(-1+x+\log (x)) \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )\right )} \, dx-\int \frac {1}{(-1+x+\log (x)) \left (1+(-1+x+\log (x)) \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )\right )} \, dx-\int \frac {1}{x (-1+x+\log (x)) \left (1+(-1+x+\log (x)) \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.64, size = 80, normalized size = 4.71 \begin {gather*} -\log \left (\log \left (\log ^2\left (\frac {3}{x^2}\right )\right )\right )+\log \left (2-2 \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )+2 x \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )-\log \left (\frac {3}{x^2}\right ) \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )+2 \left (\frac {1}{2} \log \left (\frac {3}{x^2}\right )+\log (x)\right ) \log \left (\log ^2\left (\frac {3}{x^2}\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.82, size = 75, normalized size = 4.41 \begin {gather*} \log \left (-2 \, x - \log \relax (3) + \log \left (\frac {3}{x^{2}}\right ) + 2\right ) + \log \left (\frac {{\left (2 \, x + \log \relax (3) - \log \left (\frac {3}{x^{2}}\right ) - 2\right )} \log \left (\log \left (\frac {3}{x^{2}}\right )^{2}\right ) + 2}{2 \, x + \log \relax (3) - \log \left (\frac {3}{x^{2}}\right ) - 2}\right ) - \log \left (\log \left (\log \left (\frac {3}{x^{2}}\right )^{2}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (x + 1\right )} \log \left (\log \left (\frac {3}{x^{2}}\right )^{2}\right )^{2} \log \left (\frac {3}{x^{2}}\right ) + 4}{{\left (x \log \relax (x) \log \left (\frac {3}{x^{2}}\right ) + {\left (x^{2} - x\right )} \log \left (\frac {3}{x^{2}}\right )\right )} \log \left (\log \left (\frac {3}{x^{2}}\right )^{2}\right )^{2} + x \log \left (\log \left (\frac {3}{x^{2}}\right )^{2}\right ) \log \left (\frac {3}{x^{2}}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 8.05, size = 1769, normalized size = 104.06
method | result | size |
risch | \(\ln \left (-1+\ln \relax (x )+x \right )+\ln \left (\ln \left (-\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (3)-4 i \ln \relax (x )\right )-\frac {i \left (\pi \mathrm {csgn}\left (i \left (-\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (3)-4 i \ln \relax (x )\right )^{2}\right )^{3}-\pi \mathrm {csgn}\left (i \left (-\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (3)-4 i \ln \relax (x )\right )\right )^{2} \mathrm {csgn}\left (i \left (-\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (3)-4 i \ln \relax (x )\right )^{2}\right )+2 \pi \,\mathrm {csgn}\left (i \left (-\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (3)-4 i \ln \relax (x )\right )\right ) \mathrm {csgn}\left (i \left (-\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (3)-4 i \ln \relax (x )\right )^{2}\right )^{2}+2 \pi -2 \pi x +2 i-4 i x \ln \relax (2)+4 i \ln \relax (2)+\pi x \mathrm {csgn}\left (i \left (-\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (3)-4 i \ln \relax (x )\right )\right )^{2} \mathrm {csgn}\left (i \left (-\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (3)-4 i \ln \relax (x )\right )^{2}\right )-2 \pi x \,\mathrm {csgn}\left (i \left (-\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (3)-4 i \ln \relax (x )\right )\right ) \mathrm {csgn}\left (i \left (-\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (3)-4 i \ln \relax (x )\right )^{2}\right )^{2}+\ln \relax (x ) \pi \mathrm {csgn}\left (i \left (-\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (3)-4 i \ln \relax (x )\right )\right )^{2} \mathrm {csgn}\left (i \left (-\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (3)-4 i \ln \relax (x )\right )^{2}\right )-2 \ln \relax (x ) \pi \,\mathrm {csgn}\left (i \left (-\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (3)-4 i \ln \relax (x )\right )\right ) \mathrm {csgn}\left (i \left (-\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (3)-4 i \ln \relax (x )\right )^{2}\right )^{2}-4 i \ln \relax (x ) \ln \relax (2)-2 \ln \relax (x ) \pi -\pi x \mathrm {csgn}\left (i \left (-\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (3)-4 i \ln \relax (x )\right )^{2}\right )^{3}-2 \pi \mathrm {csgn}\left (i \left (-\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (3)-4 i \ln \relax (x )\right )^{2}\right )^{2}-\ln \relax (x ) \pi \mathrm {csgn}\left (i \left (-\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (3)-4 i \ln \relax (x )\right )^{2}\right )^{3}+2 \ln \relax (x ) \pi \mathrm {csgn}\left (i \left (-\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (3)-4 i \ln \relax (x )\right )^{2}\right )^{2}+2 \pi x \mathrm {csgn}\left (i \left (-\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (3)-4 i \ln \relax (x )\right )^{2}\right )^{2}\right )}{4 \left (-1+\ln \relax (x )+x \right )}\right )-\ln \left (\ln \left (-\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (3)-4 i \ln \relax (x )\right )-\frac {i \left (2 \pi \mathrm {csgn}\left (i \left (-\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (3)-4 i \ln \relax (x )\right )^{2}\right )^{2}+\pi \mathrm {csgn}\left (i \left (-\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (3)-4 i \ln \relax (x )\right )\right )^{2} \mathrm {csgn}\left (i \left (-\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (3)-4 i \ln \relax (x )\right )^{2}\right )-2 \pi \,\mathrm {csgn}\left (i \left (-\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (3)-4 i \ln \relax (x )\right )\right ) \mathrm {csgn}\left (i \left (-\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (3)-4 i \ln \relax (x )\right )^{2}\right )^{2}-\pi \mathrm {csgn}\left (i \left (-\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (3)-4 i \ln \relax (x )\right )^{2}\right )^{3}-4 i \ln \relax (2)-2 \pi \right )}{4}\right )\) | \(1769\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.60, size = 49, normalized size = 2.88 \begin {gather*} \log \left (x + \log \relax (x) - 1\right ) + \log \left (\frac {2 \, {\left (x + \log \relax (x) - 1\right )} \log \left (-\log \relax (3) + 2 \, \log \relax (x)\right ) + 1}{2 \, {\left (x + \log \relax (x) - 1\right )}}\right ) - \log \left (\log \left (-\log \relax (3) + 2 \, \log \relax (x)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.06 \begin {gather*} -\int \frac {\ln \left (\frac {3}{x^2}\right )\,\left (x+1\right )\,{\ln \left ({\ln \left (\frac {3}{x^2}\right )}^2\right )}^2+4}{{\ln \left ({\ln \left (\frac {3}{x^2}\right )}^2\right )}^2\,\left (\ln \left (\frac {3}{x^2}\right )\,\left (x-x^2\right )-x\,\ln \left (\frac {3}{x^2}\right )\,\ln \relax (x)\right )-x\,\ln \left ({\ln \left (\frac {3}{x^2}\right )}^2\right )\,\ln \left (\frac {3}{x^2}\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: PolynomialError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________