Optimal. Leaf size=19 \[ \frac {x^2}{-3-x^2+\log \left (\frac {2}{e^3}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 18, normalized size of antiderivative = 0.95, number of steps used = 5, number of rules used = 5, integrand size = 48, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.104, Rules used = {6, 12, 1989, 28, 261} \begin {gather*} \frac {6-\log (2)}{x^2+6-\log (2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 28
Rule 261
Rule 1989
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x \left (-6+2 \log \left (\frac {2}{e^3}\right )\right )}{9+6 x^2+x^4+\left (-6-2 x^2\right ) \log \left (\frac {2}{e^3}\right )+\log ^2\left (\frac {2}{e^3}\right )} \, dx\\ &=\left (-6+2 \log \left (\frac {2}{e^3}\right )\right ) \int \frac {x}{9+6 x^2+x^4+\left (-6-2 x^2\right ) \log \left (\frac {2}{e^3}\right )+\log ^2\left (\frac {2}{e^3}\right )} \, dx\\ &=\left (-6+2 \log \left (\frac {2}{e^3}\right )\right ) \int \frac {x}{x^4+2 x^2 (6-\log (2))+(-6+\log (2))^2} \, dx\\ &=\left (-6+2 \log \left (\frac {2}{e^3}\right )\right ) \int \frac {x}{\left (6+x^2-\log (2)\right )^2} \, dx\\ &=\frac {6-\log (2)}{6+x^2-\log (2)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 17, normalized size = 0.89 \begin {gather*} -\frac {-6+\log (2)}{6+x^2-\log (2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.85, size = 17, normalized size = 0.89 \begin {gather*} -\frac {\log \relax (2) - 6}{x^{2} - \log \relax (2) + 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.20, size = 52, normalized size = 2.74 \begin {gather*} -\frac {\log \left (2 \, e^{\left (-3\right )}\right )^{2} - 6 \, \log \left (2 \, e^{\left (-3\right )}\right ) + 9}{x^{2} \log \left (2 \, e^{\left (-3\right )}\right ) - 3 \, x^{2} - \log \left (2 \, e^{\left (-3\right )}\right )^{2} + 6 \, \log \left (2 \, e^{\left (-3\right )}\right ) - 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 17, normalized size = 0.89
method | result | size |
norman | \(\frac {\ln \relax (2)-6}{-x^{2}+\ln \relax (2)-6}\) | \(17\) |
default | \(-\frac {\ln \left (2 \,{\mathrm e}^{-3}\right )-3}{-\ln \left (2 \,{\mathrm e}^{-3}\right )+x^{2}+3}\) | \(26\) |
risch | \(\frac {\ln \relax (2)}{-x^{2}+\ln \relax (2)-6}-\frac {6}{-x^{2}+\ln \relax (2)-6}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 23, normalized size = 1.21 \begin {gather*} -\frac {\log \left (2 \, e^{\left (-3\right )}\right ) - 3}{x^{2} - \log \left (2 \, e^{\left (-3\right )}\right ) + 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \int -\frac {6\,x-2\,x\,\ln \left (2\,{\mathrm {e}}^{-3}\right )}{{\ln \left (2\,{\mathrm {e}}^{-3}\right )}^2-\ln \left (2\,{\mathrm {e}}^{-3}\right )\,\left (2\,x^2+6\right )+6\,x^2+x^4+9} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 19, normalized size = 1.00 \begin {gather*} - \frac {-12 + 2 \log {\relax (2 )}}{2 x^{2} - 2 \log {\relax (2 )} + 12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________