Optimal. Leaf size=20 \[ \frac {5 (3-x) x}{\frac {1}{15}-\frac {x}{e^2}} \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 30, normalized size of antiderivative = 1.50, number of steps used = 3, number of rules used = 2, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.056, Rules used = {27, 1850} \begin {gather*} 5 e^2 x+\frac {e^4 \left (45-e^2\right )}{3 \left (e^2-15 x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 1850
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^4 (225-150 x)+1125 e^2 x^2}{\left (e^2-15 x\right )^2} \, dx\\ &=\int \left (5 e^2-\frac {5 e^4 \left (-45+e^2\right )}{\left (e^2-15 x\right )^2}\right ) \, dx\\ &=\frac {e^4 \left (45-e^2\right )}{3 \left (e^2-15 x\right )}+5 e^2 x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 37, normalized size = 1.85 \begin {gather*} -\frac {2 e^6+225 e^2 x^2-15 e^4 (3+2 x)}{3 \left (e^2-15 x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 29, normalized size = 1.45 \begin {gather*} \frac {225 \, x^{2} e^{2} - 15 \, {\left (x + 3\right )} e^{4} + e^{6}}{3 \, {\left (15 \, x - e^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: NotImplementedError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.42, size = 21, normalized size = 1.05
method | result | size |
gosper | \(\frac {15 \left (-5 x^{2}+{\mathrm e}^{2}\right ) {\mathrm e}^{2}}{{\mathrm e}^{2}-15 x}\) | \(21\) |
norman | \(\frac {-75 x^{2} {\mathrm e}^{2}+15 \,{\mathrm e}^{4}}{{\mathrm e}^{2}-15 x}\) | \(24\) |
risch | \(5 \,{\mathrm e}^{2} x -\frac {{\mathrm e}^{6}}{3 \left ({\mathrm e}^{2}-15 x \right )}+\frac {15 \,{\mathrm e}^{4}}{{\mathrm e}^{2}-15 x}\) | \(31\) |
meijerg | \(\frac {225 x}{1-15 x \,{\mathrm e}^{-2}}-\frac {2 \,{\mathrm e}^{4} \left (\frac {15 x \,{\mathrm e}^{-2}}{1-15 x \,{\mathrm e}^{-2}}+\ln \left (1-15 x \,{\mathrm e}^{-2}\right )\right )}{3}-\frac {{\mathrm e}^{4} \left (-\frac {5 x \,{\mathrm e}^{-2} \left (-45 x \,{\mathrm e}^{-2}+6\right )}{1-15 x \,{\mathrm e}^{-2}}-2 \ln \left (1-15 x \,{\mathrm e}^{-2}\right )\right )}{3}\) | \(77\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.56, size = 25, normalized size = 1.25 \begin {gather*} 5 \, x e^{2} + \frac {e^{6} - 45 \, e^{4}}{3 \, {\left (15 \, x - e^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.16, size = 27, normalized size = 1.35 \begin {gather*} 5\,x\,{\mathrm {e}}^2-\frac {15\,{\mathrm {e}}^4-\frac {{\mathrm {e}}^6}{3}}{15\,x-{\mathrm {e}}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 22, normalized size = 1.10 \begin {gather*} 5 x e^{2} + \frac {- 45 e^{4} + e^{6}}{45 x - 3 e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________