Optimal. Leaf size=18 \[ -2+e^{e^{5+3 e^{-3+x^2}+x}} \]
________________________________________________________________________________________
Rubi [F] time = 0.83, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \exp \left (-3+e^{e^{-3+x^2} \left (3+e^{3-x^2} (5+x)\right )}+x^2+e^{-3+x^2} \left (3+e^{3-x^2} (5+x)\right )\right ) \left (e^{3-x^2}+6 x\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int e^{2+e^{5+3 e^{-3+x^2}+x}+3 e^{-3+x^2}+x} \left (e^3+6 e^{x^2} x\right ) \, dx\\ &=\int \left (e^{5+e^{5+3 e^{-3+x^2}+x}+3 e^{-3+x^2}+x}+6 \exp \left (2+e^{5+3 e^{-3+x^2}+x}+3 e^{-3+x^2}+x+x^2\right ) x\right ) \, dx\\ &=6 \int \exp \left (2+e^{5+3 e^{-3+x^2}+x}+3 e^{-3+x^2}+x+x^2\right ) x \, dx+\int e^{5+e^{5+3 e^{-3+x^2}+x}+3 e^{-3+x^2}+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.31, size = 16, normalized size = 0.89 \begin {gather*} e^{e^{5+3 e^{-3+x^2}+x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 13, normalized size = 0.72 \begin {gather*} e^{\left (e^{\left (x + 3 \, e^{\left (x^{2} - 3\right )} + 5\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int {\left (6 \, x + e^{\left (-x^{2} + 3\right )}\right )} e^{\left (x^{2} + {\left ({\left (x + 5\right )} e^{\left (-x^{2} + 3\right )} + 3\right )} e^{\left (x^{2} - 3\right )} + e^{\left ({\left ({\left (x + 5\right )} e^{\left (-x^{2} + 3\right )} + 3\right )} e^{\left (x^{2} - 3\right )}\right )} - 3\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 28, normalized size = 1.56
method | result | size |
norman | \({\mathrm e}^{{\mathrm e}^{\left (\left (5+x \right ) {\mathrm e}^{-x^{2}+3}+3\right ) {\mathrm e}^{x^{2}-3}}}\) | \(28\) |
risch | \({\mathrm e}^{{\mathrm e}^{\left (x \,{\mathrm e}^{-x^{2}+3}+5 \,{\mathrm e}^{-x^{2}+3}+3\right ) {\mathrm e}^{x^{2}-3}}}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.87, size = 13, normalized size = 0.72 \begin {gather*} e^{\left (e^{\left (x + 3 \, e^{\left (x^{2} - 3\right )} + 5\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.29, size = 15, normalized size = 0.83 \begin {gather*} {\mathrm {e}}^{{\mathrm {e}}^5\,{\mathrm {e}}^{3\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{-3}}\,{\mathrm {e}}^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.59, size = 20, normalized size = 1.11 \begin {gather*} e^{e^{\left (\left (x + 5\right ) e^{3 - x^{2}} + 3\right ) e^{x^{2} - 3}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________