Optimal. Leaf size=31 \[ \log \left (\frac {x^2}{\frac {4-x}{-1+x}+\left (4-e^x-x\right ) x}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.77, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {8-17 x+10 x^2-4 x^3+e^x \left (x-3 x^2+3 x^3-x^4\right )}{4 x-9 x^2+10 x^3-6 x^4+x^5+e^x \left (x^2-2 x^3+x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8-17 x+10 x^2-4 x^3+e^x \left (x-3 x^2+3 x^3-x^4\right )}{(1-x) x \left (4-5 x+e^x x+5 x^2-e^x x^2-x^3\right )} \, dx\\ &=\int \left (\frac {1-x}{x}+\frac {4-4 x-9 x^2+12 x^3-7 x^4+x^5}{(-1+x) x \left (-4+5 x-e^x x-5 x^2+e^x x^2+x^3\right )}\right ) \, dx\\ &=\int \frac {1-x}{x} \, dx+\int \frac {4-4 x-9 x^2+12 x^3-7 x^4+x^5}{(-1+x) x \left (-4+5 x-e^x x-5 x^2+e^x x^2+x^3\right )} \, dx\\ &=\int \left (-1+\frac {1}{x}\right ) \, dx+\int \left (-\frac {3}{-4+5 x-e^x x-5 x^2+e^x x^2+x^3}-\frac {3}{(-1+x) \left (-4+5 x-e^x x-5 x^2+e^x x^2+x^3\right )}-\frac {4}{x \left (-4+5 x-e^x x-5 x^2+e^x x^2+x^3\right )}+\frac {6 x}{-4+5 x-e^x x-5 x^2+e^x x^2+x^3}-\frac {6 x^2}{-4+5 x-e^x x-5 x^2+e^x x^2+x^3}+\frac {x^3}{-4+5 x-e^x x-5 x^2+e^x x^2+x^3}\right ) \, dx\\ &=-x+\log (x)-3 \int \frac {1}{-4+5 x-e^x x-5 x^2+e^x x^2+x^3} \, dx-3 \int \frac {1}{(-1+x) \left (-4+5 x-e^x x-5 x^2+e^x x^2+x^3\right )} \, dx-4 \int \frac {1}{x \left (-4+5 x-e^x x-5 x^2+e^x x^2+x^3\right )} \, dx+6 \int \frac {x}{-4+5 x-e^x x-5 x^2+e^x x^2+x^3} \, dx-6 \int \frac {x^2}{-4+5 x-e^x x-5 x^2+e^x x^2+x^3} \, dx+\int \frac {x^3}{-4+5 x-e^x x-5 x^2+e^x x^2+x^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.39, size = 42, normalized size = 1.35 \begin {gather*} \log (x)+\log ((1-x) x)-\log \left (4-5 x+e^x x+5 x^2-e^x x^2-x^3\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 39, normalized size = 1.26 \begin {gather*} \log \relax (x) - \log \left (\frac {x^{3} - 5 \, x^{2} + {\left (x^{2} - x\right )} e^{x} + 5 \, x - 4}{x^{2} - x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 36, normalized size = 1.16 \begin {gather*} -\log \left (x^{3} + x^{2} e^{x} - 5 \, x^{2} - x e^{x} + 5 \, x - 4\right ) + \log \left (x - 1\right ) + 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 32, normalized size = 1.03
method | result | size |
risch | \(\ln \relax (x )-\ln \left ({\mathrm e}^{x}+\frac {x^{3}-5 x^{2}+5 x -4}{x \left (x -1\right )}\right )\) | \(32\) |
norman | \(2 \ln \relax (x )-\ln \left (x^{3}+{\mathrm e}^{x} x^{2}-5 x^{2}-{\mathrm e}^{x} x +5 x -4\right )+\ln \left (x -1\right )\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.68, size = 39, normalized size = 1.26 \begin {gather*} \log \relax (x) - \log \left (\frac {x^{3} - 5 \, x^{2} + {\left (x^{2} - x\right )} e^{x} + 5 \, x - 4}{x^{2} - x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.22, size = 36, normalized size = 1.16 \begin {gather*} \ln \left (x-1\right )-\ln \left (5\,x+x^2\,{\mathrm {e}}^x-x\,{\mathrm {e}}^x-5\,x^2+x^3-4\right )+2\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 26, normalized size = 0.84 \begin {gather*} \log {\relax (x )} - \log {\left (e^{x} + \frac {x^{3} - 5 x^{2} + 5 x - 4}{x^{2} - x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________