Optimal. Leaf size=28 \[ 1-e^{e^{x \left (-\left (\frac {16}{x^2}-x\right )^2+\log (5)\right )}+x} \]
________________________________________________________________________________________
Rubi [A] time = 0.83, antiderivative size = 27, normalized size of antiderivative = 0.96, number of steps used = 1, number of rules used = 1, integrand size = 77, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.013, Rules used = {6706} \begin {gather*} -e^{5^x e^{-\frac {x^6-32 x^3+256}{x^3}}+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-e^{5^x e^{-\frac {256-32 x^3+x^6}{x^3}}+x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.14, size = 24, normalized size = 0.86 \begin {gather*} -e^{5^x e^{32-\frac {256}{x^3}-x^3}+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.87, size = 28, normalized size = 1.00 \begin {gather*} -e^{\left (x + e^{\left (-\frac {x^{6} - x^{4} \log \relax (5) - 32 \, x^{3} + 256}{x^{3}}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 22, normalized size = 0.79 \begin {gather*} -e^{\left (x + e^{\left (-x^{3} + x \log \relax (5) - \frac {256}{x^{3}} + 32\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 23, normalized size = 0.82
method | result | size |
risch | \(-{\mathrm e}^{5^{x} {\mathrm e}^{-\frac {\left (x^{3}-16\right )^{2}}{x^{3}}}+x}\) | \(23\) |
norman | \(-{\mathrm e}^{{\mathrm e}^{\frac {x^{4} \ln \relax (5)-x^{6}+32 x^{3}-256}{x^{3}}}+x}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\int \frac {{\left (x^{4} - {\left (3 \, x^{6} - x^{4} \log \relax (5) - 768\right )} e^{\left (-\frac {x^{6} - x^{4} \log \relax (5) - 32 \, x^{3} + 256}{x^{3}}\right )}\right )} e^{\left (x + e^{\left (-\frac {x^{6} - x^{4} \log \relax (5) - 32 \, x^{3} + 256}{x^{3}}\right )}\right )}}{x^{4}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.29, size = 23, normalized size = 0.82 \begin {gather*} -{\mathrm {e}}^{5^x\,{\mathrm {e}}^{32}\,{\mathrm {e}}^{-x^3}\,{\mathrm {e}}^{-\frac {256}{x^3}}}\,{\mathrm {e}}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.52, size = 26, normalized size = 0.93 \begin {gather*} - e^{x + e^{\frac {- x^{6} + x^{4} \log {\relax (5 )} + 32 x^{3} - 256}{x^{3}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________