Optimal. Leaf size=24 \[ \frac {2 x^3}{-\frac {2+x}{x}+\frac {x+\log (x)}{x}} \]
________________________________________________________________________________________
Rubi [C] time = 0.34, antiderivative size = 79, normalized size of antiderivative = 3.29, number of steps used = 10, number of rules used = 8, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.308, Rules used = {2561, 6741, 12, 2306, 2309, 2178, 2366, 6482} \begin {gather*} 8 e^8 \text {Ei}(-4 (2-\log (x)))-8 e^8 (9-4 \log (x)) \text {Ei}(-4 (2-\log (x)))+32 e^8 (2-\log (x)) \text {Ei}(-4 (2-\log (x)))+8 x^4-\frac {2 x^4 (9-4 \log (x))}{2-\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2178
Rule 2306
Rule 2309
Rule 2366
Rule 2561
Rule 6482
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x^3 (-18+8 \log (x))}{4-4 \log (x)+\log ^2(x)} \, dx\\ &=\int \frac {2 x^3 (-9+4 \log (x))}{(2-\log (x))^2} \, dx\\ &=2 \int \frac {x^3 (-9+4 \log (x))}{(2-\log (x))^2} \, dx\\ &=-8 e^8 \text {Ei}(-4 (2-\log (x))) (9-4 \log (x))-\frac {2 x^4 (9-4 \log (x))}{2-\log (x)}-8 \int \left (\frac {4 e^8 \text {Ei}(4 (-2+\log (x)))}{x}+\frac {x^3}{2-\log (x)}\right ) \, dx\\ &=-8 e^8 \text {Ei}(-4 (2-\log (x))) (9-4 \log (x))-\frac {2 x^4 (9-4 \log (x))}{2-\log (x)}-8 \int \frac {x^3}{2-\log (x)} \, dx-\left (32 e^8\right ) \int \frac {\text {Ei}(4 (-2+\log (x)))}{x} \, dx\\ &=-8 e^8 \text {Ei}(-4 (2-\log (x))) (9-4 \log (x))-\frac {2 x^4 (9-4 \log (x))}{2-\log (x)}-8 \operatorname {Subst}\left (\int \frac {e^{4 x}}{2-x} \, dx,x,\log (x)\right )-\left (32 e^8\right ) \operatorname {Subst}(\int \text {Ei}(4 (-2+x)) \, dx,x,\log (x))\\ &=8 e^8 \text {Ei}(-4 (2-\log (x)))-8 e^8 \text {Ei}(-4 (2-\log (x))) (9-4 \log (x))-\frac {2 x^4 (9-4 \log (x))}{2-\log (x)}-\left (8 e^8\right ) \operatorname {Subst}(\int \text {Ei}(x) \, dx,x,-8+4 \log (x))\\ &=8 x^4+8 e^8 \text {Ei}(-4 (2-\log (x)))-8 e^8 \text {Ei}(-4 (2-\log (x))) (9-4 \log (x))-\frac {2 x^4 (9-4 \log (x))}{2-\log (x)}+32 e^8 \text {Ei}(-8+4 \log (x)) (2-\log (x))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 11, normalized size = 0.46 \begin {gather*} \frac {2 x^4}{-2+\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 11, normalized size = 0.46 \begin {gather*} \frac {2 \, x^{4}}{\log \relax (x) - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 11, normalized size = 0.46 \begin {gather*} \frac {2 \, x^{4}}{\log \relax (x) - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 12, normalized size = 0.50
method | result | size |
norman | \(\frac {2 x^{4}}{\ln \relax (x )-2}\) | \(12\) |
risch | \(\frac {2 x^{4}}{\ln \relax (x )-2}\) | \(12\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {16 \, x^{4}}{\log \relax (x) - 2} + \frac {18 \, e^{8} E_{2}\left (-4 \, \log \relax (x) + 8\right )}{\log \relax (x) - 2} + 72 \, \int \frac {x^{3}}{\log \relax (x) - 2}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.25, size = 11, normalized size = 0.46 \begin {gather*} \frac {2\,x^4}{\ln \relax (x)-2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.08, size = 8, normalized size = 0.33 \begin {gather*} \frac {2 x^{4}}{\log {\relax (x )} - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________