Optimal. Leaf size=23 \[ \frac {\left (-2+e^{3+e^e}\right ) x}{-3+\left (e^x+x\right ) \log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 1.66, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {6+2 e^x+2 x+e^x (-2+2 x) \log (x)+e^{3+e^e} \left (-3-e^x-x+e^x (1-x) \log (x)\right )}{9+\left (-6 e^x-6 x\right ) \log (x)+\left (e^{2 x}+2 e^x x+x^2\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (2-e^{3+e^e}\right ) \left (3+e^x+x+e^x (-1+x) \log (x)\right )}{\left (3-\left (e^x+x\right ) \log (x)\right )^2} \, dx\\ &=\left (2-e^{3+e^e}\right ) \int \frac {3+e^x+x+e^x (-1+x) \log (x)}{\left (3-\left (e^x+x\right ) \log (x)\right )^2} \, dx\\ &=\left (2-e^{3+e^e}\right ) \int \left (\frac {1-\log (x)+x \log (x)}{\log (x) \left (-3+e^x \log (x)+x \log (x)\right )}-\frac {-3-3 x \log (x)-x \log ^2(x)+x^2 \log ^2(x)}{\log (x) \left (-3+e^x \log (x)+x \log (x)\right )^2}\right ) \, dx\\ &=\left (2-e^{3+e^e}\right ) \int \frac {1-\log (x)+x \log (x)}{\log (x) \left (-3+e^x \log (x)+x \log (x)\right )} \, dx+\left (-2+e^{3+e^e}\right ) \int \frac {-3-3 x \log (x)-x \log ^2(x)+x^2 \log ^2(x)}{\log (x) \left (-3+e^x \log (x)+x \log (x)\right )^2} \, dx\\ &=\left (2-e^{3+e^e}\right ) \int \left (-\frac {1}{-3+e^x \log (x)+x \log (x)}+\frac {x}{-3+e^x \log (x)+x \log (x)}+\frac {1}{\log (x) \left (-3+e^x \log (x)+x \log (x)\right )}\right ) \, dx+\left (-2+e^{3+e^e}\right ) \int \left (-\frac {3 x}{\left (-3+e^x \log (x)+x \log (x)\right )^2}-\frac {3}{\log (x) \left (-3+e^x \log (x)+x \log (x)\right )^2}-\frac {x \log (x)}{\left (-3+e^x \log (x)+x \log (x)\right )^2}+\frac {x^2 \log (x)}{\left (-3+e^x \log (x)+x \log (x)\right )^2}\right ) \, dx\\ &=\left (2-e^{3+e^e}\right ) \int \frac {x \log (x)}{\left (-3+e^x \log (x)+x \log (x)\right )^2} \, dx+\left (2-e^{3+e^e}\right ) \int \frac {x}{-3+e^x \log (x)+x \log (x)} \, dx+\left (2-e^{3+e^e}\right ) \int \frac {1}{\log (x) \left (-3+e^x \log (x)+x \log (x)\right )} \, dx+\left (3 \left (2-e^{3+e^e}\right )\right ) \int \frac {x}{\left (-3+e^x \log (x)+x \log (x)\right )^2} \, dx+\left (3 \left (2-e^{3+e^e}\right )\right ) \int \frac {1}{\log (x) \left (-3+e^x \log (x)+x \log (x)\right )^2} \, dx+\left (-2+e^{3+e^e}\right ) \int \frac {x^2 \log (x)}{\left (-3+e^x \log (x)+x \log (x)\right )^2} \, dx+\left (-2+e^{3+e^e}\right ) \int \frac {1}{-3+e^x \log (x)+x \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.28, size = 25, normalized size = 1.09 \begin {gather*} \frac {\left (-2+e^{3+e^e}\right ) x}{-3+e^x \log (x)+x \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 24, normalized size = 1.04 \begin {gather*} \frac {x e^{\left (e^{e} + 3\right )} - 2 \, x}{{\left (x + e^{x}\right )} \log \relax (x) - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.39, size = 26, normalized size = 1.13 \begin {gather*} \frac {x e^{\left (e^{e} + 3\right )} - 2 \, x}{x \log \relax (x) + e^{x} \log \relax (x) - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 24, normalized size = 1.04
method | result | size |
risch | \(\frac {x \left ({\mathrm e}^{{\mathrm e}^{{\mathrm e}}+3}-2\right )}{{\mathrm e}^{x} \ln \relax (x )+x \ln \relax (x )-3}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.76, size = 23, normalized size = 1.00 \begin {gather*} \frac {x {\left (e^{\left (e^{e} + 3\right )} - 2\right )}}{x \log \relax (x) + e^{x} \log \relax (x) - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {2\,x+2\,{\mathrm {e}}^x-{\mathrm {e}}^{{\mathrm {e}}^{\mathrm {e}}+3}\,\left (x+{\mathrm {e}}^x+{\mathrm {e}}^x\,\ln \relax (x)\,\left (x-1\right )+3\right )+{\mathrm {e}}^x\,\ln \relax (x)\,\left (2\,x-2\right )+6}{\left ({\mathrm {e}}^{2\,x}+2\,x\,{\mathrm {e}}^x+x^2\right )\,{\ln \relax (x)}^2+\left (-6\,x-6\,{\mathrm {e}}^x\right )\,\ln \relax (x)+9} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 27, normalized size = 1.17 \begin {gather*} \frac {- 2 x + x e^{3} e^{e^{e}}}{x \log {\relax (x )} + e^{x} \log {\relax (x )} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________