Optimal. Leaf size=19 \[ \frac {e^4 \left (1+e^x\right )}{4 (-4+2 x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.17, antiderivative size = 31, normalized size of antiderivative = 1.63, number of steps used = 7, number of rules used = 5, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {27, 12, 6741, 6742, 2197} \begin {gather*} -\frac {e^{x+4}}{8 (2-x)}-\frac {e^4}{8 (2-x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 2197
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-e^4+e^{4+x} (-3+x)}{8 (-2+x)^2} \, dx\\ &=\frac {1}{8} \int \frac {-e^4+e^{4+x} (-3+x)}{(-2+x)^2} \, dx\\ &=\frac {1}{8} \int \frac {e^4 \left (-1-3 e^x+e^x x\right )}{(2-x)^2} \, dx\\ &=\frac {1}{8} e^4 \int \frac {-1-3 e^x+e^x x}{(2-x)^2} \, dx\\ &=\frac {1}{8} e^4 \int \left (-\frac {1}{(-2+x)^2}+\frac {e^x (-3+x)}{(-2+x)^2}\right ) \, dx\\ &=-\frac {e^4}{8 (2-x)}+\frac {1}{8} e^4 \int \frac {e^x (-3+x)}{(-2+x)^2} \, dx\\ &=-\frac {e^4}{8 (2-x)}-\frac {e^{4+x}}{8 (2-x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 17, normalized size = 0.89 \begin {gather*} \frac {e^4 \left (1+e^x\right )}{8 (-2+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.94, size = 14, normalized size = 0.74 \begin {gather*} \frac {e^{4} + e^{\left (x + 4\right )}}{8 \, {\left (x - 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 14, normalized size = 0.74 \begin {gather*} \frac {e^{4} + e^{\left (x + 4\right )}}{8 \, {\left (x - 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.37, size = 22, normalized size = 1.16
method | result | size |
norman | \(\frac {\frac {{\mathrm e}^{4} {\mathrm e}^{x}}{8}+\frac {{\mathrm e}^{4}}{8}}{x -2}\) | \(22\) |
risch | \(\frac {{\mathrm e}^{4}}{8 x -16}+\frac {{\mathrm e}^{4+x}}{8 x -16}\) | \(22\) |
default | \(\frac {{\mathrm e}^{4} \left (-\frac {2 \,{\mathrm e}^{x}}{x -2}-3 \,{\mathrm e}^{2} \expIntegralEi \left (1, 2-x \right )\right )}{8}+\frac {{\mathrm e}^{4}}{8 x -16}-\frac {3 \,{\mathrm e}^{4} \left (-\frac {{\mathrm e}^{x}}{x -2}-{\mathrm e}^{2} \expIntegralEi \left (1, 2-x \right )\right )}{8}\) | \(67\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {x e^{\left (x + 4\right )}}{8 \, {\left (x^{2} - 4 \, x + 4\right )}} + \frac {3 \, e^{6} E_{2}\left (-x + 2\right )}{8 \, {\left (x - 2\right )}} + \frac {e^{4}}{8 \, {\left (x - 2\right )}} + \frac {1}{8} \, \int \frac {{\left (x e^{4} + 2 \, e^{4}\right )} e^{x}}{x^{3} - 6 \, x^{2} + 12 \, x - 8}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.16, size = 17, normalized size = 0.89 \begin {gather*} \frac {\frac {{\mathrm {e}}^{x+4}}{8}+\frac {{\mathrm {e}}^4}{8}}{x-2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 19, normalized size = 1.00 \begin {gather*} \frac {e^{4} e^{x}}{8 x - 16} + \frac {e^{4}}{8 x - 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________