Optimal. Leaf size=26 \[ 3+\frac {\log \left (2+e^x\right )}{2 e^2}+\log \left (\frac {1}{\log \left (-25+e^{2+x}\right )}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.29, antiderivative size = 25, normalized size of antiderivative = 0.96, number of steps used = 6, number of rules used = 5, integrand size = 87, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {2282, 12, 2390, 2302, 29} \begin {gather*} \frac {\log \left (e^x+2\right )}{2 e^2}-\log \left (\log \left (e^{x+2}-25\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 29
Rule 2282
Rule 2302
Rule 2390
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\operatorname {Subst}\left (\int \frac {\frac {1}{2+x}-\frac {2 e^4}{\left (-25+e^2 x\right ) \log \left (-25+e^2 x\right )}}{2 e^2} \, dx,x,e^x\right )\\ &=\frac {\operatorname {Subst}\left (\int \left (\frac {1}{2+x}-\frac {2 e^4}{\left (-25+e^2 x\right ) \log \left (-25+e^2 x\right )}\right ) \, dx,x,e^x\right )}{2 e^2}\\ &=\frac {\log \left (2+e^x\right )}{2 e^2}-e^2 \operatorname {Subst}\left (\int \frac {1}{\left (-25+e^2 x\right ) \log \left (-25+e^2 x\right )} \, dx,x,e^x\right )\\ &=\frac {\log \left (2+e^x\right )}{2 e^2}-\operatorname {Subst}\left (\int \frac {1}{x \log (x)} \, dx,x,-25+e^{2+x}\right )\\ &=\frac {\log \left (2+e^x\right )}{2 e^2}-\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log \left (-25+e^{2+x}\right )\right )\\ &=\frac {\log \left (2+e^x\right )}{2 e^2}-\log \left (\log \left (-25+e^{2+x}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 26, normalized size = 1.00 \begin {gather*} \frac {1}{2} \left (\frac {\log \left (2+e^x\right )}{e^2}-2 \log \left (\log \left (-25+e^{2+x}\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 29, normalized size = 1.12 \begin {gather*} -\frac {1}{2} \, {\left (2 \, e^{2} \log \left (\log \left (e^{\left (x + 2\right )} - 25\right )\right ) - \log \left (2 \, e^{2} + e^{\left (x + 2\right )}\right )\right )} e^{\left (-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.43, size = 56, normalized size = 2.15 \begin {gather*} \frac {2 \, e^{2} \log \left (-e^{x} - 2\right ) - 4 \, e^{4} \log \left (\log \left (e^{\left (x + 2\right )} - 25\right )\right ) - 50 \, e^{2} \log \left (\log \left (e^{\left (x + 2\right )} - 25\right )\right ) + 25 \, \log \left (e^{x} + 2\right )}{2 \, {\left (2 \, e^{4} + 25 \, e^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.26, size = 21, normalized size = 0.81
method | result | size |
risch | \(\frac {\ln \left ({\mathrm e}^{x}+2\right ) {\mathrm e}^{-2}}{2}-\ln \left (\ln \left ({\mathrm e}^{2+x}-25\right )\right )\) | \(21\) |
norman | \(\frac {\ln \left ({\mathrm e}^{x}+2\right ) {\mathrm e}^{-2}}{2}-\ln \left (\ln \left ({\mathrm e}^{2} {\mathrm e}^{x}-25\right )\right )\) | \(24\) |
default | \(\frac {25 \,{\mathrm e}^{-2} \ln \left ({\mathrm e}^{2+x}-25\right )}{2 \left (2 \,{\mathrm e}^{2}+25\right )}+\frac {\ln \left ({\mathrm e}^{2+x}+2 \,{\mathrm e}^{2}\right )}{2 \,{\mathrm e}^{2}+25}-\ln \left (\ln \left ({\mathrm e}^{2+x}-25\right )\right )-\frac {25 \,{\mathrm e}^{-2} \ln \left ({\mathrm e}^{2} {\mathrm e}^{x}-25\right )}{2 \left (2 \,{\mathrm e}^{2}+25\right )}+\frac {25 \,{\mathrm e}^{-2} \ln \left ({\mathrm e}^{x}+2\right )}{2 \left (2 \,{\mathrm e}^{2}+25\right )}\) | \(93\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.58, size = 25, normalized size = 0.96 \begin {gather*} \frac {1}{2} \, e^{\left (-2\right )} \log \left (2 \, e^{2} + e^{\left (x + 2\right )}\right ) - \log \left (\log \left (e^{\left (x + 2\right )} - 25\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.65, size = 21, normalized size = 0.81 \begin {gather*} \frac {{\mathrm {e}}^{-2}\,\ln \left ({\mathrm {e}}^x+2\right )}{2}-\ln \left (\ln \left ({\mathrm {e}}^2\,{\mathrm {e}}^x-25\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.22, size = 22, normalized size = 0.85 \begin {gather*} \frac {\log {\left (e^{x} + 2 \right )}}{2 e^{2}} - \log {\left (\log {\left (e^{2} e^{x} - 25 \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________