Optimal. Leaf size=24 \[ 2-65536 x^8+\log (x)-\log \left (4+x-\frac {x}{5 \log (3)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.14, antiderivative size = 25, normalized size of antiderivative = 1.04, number of steps used = 4, number of rules used = 3, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {1986, 1593, 1620} \begin {gather*} -65536 x^8+\log (x)-\log (20 \log (3)-x (1-\log (243))) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 1620
Rule 1986
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {524288 x^9+\left (20-10485760 x^8-2621440 x^9\right ) \log (3)}{20 x \log (3)-x^2 (1-\log (243))} \, dx\\ &=\int \frac {524288 x^9+\left (20-10485760 x^8-2621440 x^9\right ) \log (3)}{x (20 \log (3)+x (-1+\log (243)))} \, dx\\ &=\int \left (\frac {1}{x}-524288 x^7+\frac {1-\log (243)}{20 \log (3)-x (1-\log (243))}\right ) \, dx\\ &=-65536 x^8+\log (x)-\log (20 \log (3)-x (1-\log (243)))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 31, normalized size = 1.29 \begin {gather*} -4 \left (16384 x^8-\frac {\log (x)}{4}+\frac {1}{4} \log (-x+20 \log (3)+x \log (243))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 22, normalized size = 0.92 \begin {gather*} -65536 \, x^{8} - \log \left (5 \, {\left (x + 4\right )} \log \relax (3) - x\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.20, size = 147, normalized size = 6.12 \begin {gather*} -\frac {65536 \, {\left (390625 \, x^{8} \log \relax (3)^{8} - 625000 \, x^{8} \log \relax (3)^{7} + 437500 \, x^{8} \log \relax (3)^{6} - 175000 \, x^{8} \log \relax (3)^{5} + 43750 \, x^{8} \log \relax (3)^{4} - 7000 \, x^{8} \log \relax (3)^{3} + 700 \, x^{8} \log \relax (3)^{2} - 40 \, x^{8} \log \relax (3) + x^{8}\right )}}{390625 \, \log \relax (3)^{8} - 625000 \, \log \relax (3)^{7} + 437500 \, \log \relax (3)^{6} - 175000 \, \log \relax (3)^{5} + 43750 \, \log \relax (3)^{4} - 7000 \, \log \relax (3)^{3} + 700 \, \log \relax (3)^{2} - 40 \, \log \relax (3) + 1} - \log \left ({\left | 5 \, x \log \relax (3) - x + 20 \, \log \relax (3) \right |}\right ) + \log \left ({\left | x \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.34, size = 25, normalized size = 1.04
method | result | size |
norman | \(-65536 x^{8}-\ln \left (5 x \ln \relax (3)+20 \ln \relax (3)-x \right )+\ln \relax (x )\) | \(25\) |
risch | \(-65536 x^{8}+\ln \left (-x \right )-\ln \left (x \left (5 \ln \relax (3)-1\right )+20 \ln \relax (3)\right )\) | \(27\) |
default | \(-65536 x^{8}+\ln \relax (x )+\frac {4 \left (-\frac {5 \ln \relax (3)}{4}+\frac {1}{4}\right ) \ln \left (5 x \ln \relax (3)+20 \ln \relax (3)-x \right )}{5 \ln \relax (3)-1}\) | \(39\) |
meijerg | \(-\ln \left (1+\frac {x \left (5 \ln \relax (3)-1\right )}{20 \ln \relax (3)}\right )+\ln \relax (x )-2 \ln \relax (2)-\ln \relax (5)-\ln \left (\ln \relax (3)\right )+\ln \left (5 \ln \relax (3)-1\right )+\frac {512000000000 \ln \relax (3)^{8} \left (-131072 \ln \relax (3)+\frac {131072}{5}\right ) \left (-\frac {x \left (5 \ln \relax (3)-1\right ) \left (-\frac {63 x^{7} \left (5 \ln \relax (3)-1\right )^{7}}{256000000 \ln \relax (3)^{7}}+\frac {9 x^{6} \left (5 \ln \relax (3)-1\right )^{6}}{1600000 \ln \relax (3)^{6}}-\frac {21 x^{5} \left (5 \ln \relax (3)-1\right )^{5}}{160000 \ln \relax (3)^{5}}+\frac {63 x^{4} \left (5 \ln \relax (3)-1\right )^{4}}{20000 \ln \relax (3)^{4}}-\frac {63 x^{3} \left (5 \ln \relax (3)-1\right )^{3}}{800 \ln \relax (3)^{3}}+\frac {21 x^{2} \left (5 \ln \relax (3)-1\right )^{2}}{10 \ln \relax (3)^{2}}-\frac {63 x \left (5 \ln \relax (3)-1\right )}{\ln \relax (3)}+2520\right )}{50400 \ln \relax (3)}+\ln \left (1+\frac {x \left (5 \ln \relax (3)-1\right )}{20 \ln \relax (3)}\right )\right )}{\left (5 \ln \relax (3)-1\right )^{9}}-\frac {13421772800000000 \ln \relax (3)^{8} \left (\frac {x \left (5 \ln \relax (3)-1\right ) \left (\frac {3 x^{6} \left (5 \ln \relax (3)-1\right )^{6}}{1600000 \ln \relax (3)^{6}}-\frac {7 x^{5} \left (5 \ln \relax (3)-1\right )^{5}}{160000 \ln \relax (3)^{5}}+\frac {21 x^{4} \left (5 \ln \relax (3)-1\right )^{4}}{20000 \ln \relax (3)^{4}}-\frac {21 x^{3} \left (5 \ln \relax (3)-1\right )^{3}}{800 \ln \relax (3)^{3}}+\frac {7 x^{2} \left (5 \ln \relax (3)-1\right )^{2}}{10 \ln \relax (3)^{2}}-\frac {21 x \left (5 \ln \relax (3)-1\right )}{\ln \relax (3)}+840\right )}{16800 \ln \relax (3)}-\ln \left (1+\frac {x \left (5 \ln \relax (3)-1\right )}{20 \ln \relax (3)}\right )\right )}{\left (5 \ln \relax (3)-1\right )^{8}}\) | \(355\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 24, normalized size = 1.00 \begin {gather*} -65536 \, x^{8} - \log \left (x {\left (5 \, \log \relax (3) - 1\right )} + 20 \, \log \relax (3)\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.18, size = 325, normalized size = 13.54 \begin {gather*} \frac {10\,x^6\,\ln \relax (3)\,\left (\frac {10485760\,\ln \relax (3)}{\ln \left (243\right )-1}-\frac {20\,\ln \relax (3)\,\left (2621440\,\ln \relax (3)-524288\right )}{{\left (\ln \left (243\right )-1\right )}^2}\right )}{3\,\left (\ln \left (243\right )-1\right )}-\frac {x^8\,\left (2621440\,\ln \relax (3)-524288\right )}{8\,\left (\ln \left (243\right )-1\right )}-x^7\,\left (\frac {10485760\,\ln \relax (3)}{7\,\left (\ln \left (243\right )-1\right )}-\frac {20\,\ln \relax (3)\,\left (2621440\,\ln \relax (3)-524288\right )}{7\,{\left (\ln \left (243\right )-1\right )}^2}\right )-\frac {64000000\,x\,{\ln \relax (3)}^6\,\left (\frac {10485760\,\ln \relax (3)}{\ln \left (243\right )-1}-\frac {20\,\ln \relax (3)\,\left (2621440\,\ln \relax (3)-524288\right )}{{\left (\ln \left (243\right )-1\right )}^2}\right )}{{\left (\ln \left (243\right )-1\right )}^6}-\frac {80\,x^5\,{\ln \relax (3)}^2\,\left (\frac {10485760\,\ln \relax (3)}{\ln \left (243\right )-1}-\frac {20\,\ln \relax (3)\,\left (2621440\,\ln \relax (3)-524288\right )}{{\left (\ln \left (243\right )-1\right )}^2}\right )}{{\left (\ln \left (243\right )-1\right )}^2}+\frac {2000\,x^4\,{\ln \relax (3)}^3\,\left (\frac {10485760\,\ln \relax (3)}{\ln \left (243\right )-1}-\frac {20\,\ln \relax (3)\,\left (2621440\,\ln \relax (3)-524288\right )}{{\left (\ln \left (243\right )-1\right )}^2}\right )}{{\left (\ln \left (243\right )-1\right )}^3}-\frac {160000\,x^3\,{\ln \relax (3)}^4\,\left (\frac {10485760\,\ln \relax (3)}{\ln \left (243\right )-1}-\frac {20\,\ln \relax (3)\,\left (2621440\,\ln \relax (3)-524288\right )}{{\left (\ln \left (243\right )-1\right )}^2}\right )}{3\,{\left (\ln \left (243\right )-1\right )}^4}+\frac {1600000\,x^2\,{\ln \relax (3)}^5\,\left (\frac {10485760\,\ln \relax (3)}{\ln \left (243\right )-1}-\frac {20\,\ln \relax (3)\,\left (2621440\,\ln \relax (3)-524288\right )}{{\left (\ln \left (243\right )-1\right )}^2}\right )}{{\left (\ln \left (243\right )-1\right )}^5}+\mathrm {atan}\left (\frac {x\,\left (2\,\ln \left (243\right )-2\right )\,1{}\mathrm {i}}{20\,\ln \relax (3)}+1{}\mathrm {i}\right )\,2{}\mathrm {i} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.51, size = 22, normalized size = 0.92 \begin {gather*} - 65536 x^{8} + \log {\relax (x )} - \log {\left (x + \frac {20 \log {\relax (3 )}}{-1 + 5 \log {\relax (3 )}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________