Optimal. Leaf size=29 \[ \frac {60 e^{2 e^{-e^{2/x}} \left (2-e^{2 x}\right )}}{x} \]
________________________________________________________________________________________
Rubi [F] time = 2.70, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-e^{2/x}+e^{-e^{2/x}} \left (4-2 e^{2 x}\right )} \left (480 e^{2/x}-60 e^{e^{2/x}} x+e^{2 x} \left (-240 e^{2/x}-240 x^2\right )\right )}{x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {60 e^{-e^{2/x}+e^{-e^{2/x}} \left (4-2 e^{2 x}\right )} \left (-8 e^{2/x}+e^{e^{2/x}} x\right )}{x^3}-\frac {240 \exp \left (-e^{2/x}+e^{-e^{2/x}} \left (4-2 e^{2 x}\right )+2 x\right ) \left (e^{2/x}+x^2\right )}{x^3}\right ) \, dx\\ &=-\left (60 \int \frac {e^{-e^{2/x}+e^{-e^{2/x}} \left (4-2 e^{2 x}\right )} \left (-8 e^{2/x}+e^{e^{2/x}} x\right )}{x^3} \, dx\right )-240 \int \frac {\exp \left (-e^{2/x}+e^{-e^{2/x}} \left (4-2 e^{2 x}\right )+2 x\right ) \left (e^{2/x}+x^2\right )}{x^3} \, dx\\ &=-\left (60 \int \left (-\frac {8 \exp \left (-e^{2/x}+e^{-e^{2/x}} \left (4-2 e^{2 x}\right )+\frac {2}{x}\right )}{x^3}+\frac {e^{e^{-e^{2/x}} \left (4-2 e^{2 x}\right )}}{x^2}\right ) \, dx\right )-240 \int \left (\frac {\exp \left (-e^{2/x}+e^{-e^{2/x}} \left (4-2 e^{2 x}\right )+\frac {2}{x}+2 x\right )}{x^3}+\frac {\exp \left (-e^{2/x}+e^{-e^{2/x}} \left (4-2 e^{2 x}\right )+2 x\right )}{x}\right ) \, dx\\ &=-\left (60 \int \frac {e^{e^{-e^{2/x}} \left (4-2 e^{2 x}\right )}}{x^2} \, dx\right )-240 \int \frac {\exp \left (-e^{2/x}+e^{-e^{2/x}} \left (4-2 e^{2 x}\right )+\frac {2}{x}+2 x\right )}{x^3} \, dx-240 \int \frac {\exp \left (-e^{2/x}+e^{-e^{2/x}} \left (4-2 e^{2 x}\right )+2 x\right )}{x} \, dx+480 \int \frac {\exp \left (-e^{2/x}+e^{-e^{2/x}} \left (4-2 e^{2 x}\right )+\frac {2}{x}\right )}{x^3} \, dx\\ &=-\left (60 \int \frac {e^{-2 e^{-e^{2/x}} \left (-2+e^{2 x}\right )}}{x^2} \, dx\right )-240 \int \frac {\exp \left (-e^{2/x}+e^{-e^{2/x}} \left (4-2 e^{2 x}\right )+\frac {2}{x}+2 x\right )}{x^3} \, dx-240 \int \frac {\exp \left (-e^{2/x}+e^{-e^{2/x}} \left (4-2 e^{2 x}\right )+2 x\right )}{x} \, dx+480 \int \frac {\exp \left (-e^{2/x}+e^{-e^{2/x}} \left (4-2 e^{2 x}\right )+\frac {2}{x}\right )}{x^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 27, normalized size = 0.93 \begin {gather*} \frac {60 e^{-2 e^{-e^{2/x}} \left (-2+e^{2 x}\right )}}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.85, size = 45, normalized size = 1.55 \begin {gather*} \frac {60 \, e^{\left (-{\left (2 \, e^{\left (2 \, x\right )} + e^{\left (\frac {2}{x} + e^{\frac {2}{x}}\right )} - 4\right )} e^{\left (-e^{\frac {2}{x}}\right )} + e^{\frac {2}{x}}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {60 \, {\left (4 \, {\left (x^{2} + e^{\frac {2}{x}}\right )} e^{\left (2 \, x\right )} + x e^{\left (e^{\frac {2}{x}}\right )} - 8 \, e^{\frac {2}{x}}\right )} e^{\left (-2 \, {\left (e^{\left (2 \, x\right )} - 2\right )} e^{\left (-e^{\frac {2}{x}}\right )} - e^{\frac {2}{x}}\right )}}{x^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.17, size = 24, normalized size = 0.83
method | result | size |
risch | \(\frac {60 \,{\mathrm e}^{-2 \left ({\mathrm e}^{2 x}-2\right ) {\mathrm e}^{-{\mathrm e}^{\frac {2}{x}}}}}{x}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -60 \, \int \frac {{\left (4 \, {\left (x^{2} + e^{\frac {2}{x}}\right )} e^{\left (2 \, x\right )} + x e^{\left (e^{\frac {2}{x}}\right )} - 8 \, e^{\frac {2}{x}}\right )} e^{\left (-2 \, {\left (e^{\left (2 \, x\right )} - 2\right )} e^{\left (-e^{\frac {2}{x}}\right )} - e^{\frac {2}{x}}\right )}}{x^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.27, size = 23, normalized size = 0.79 \begin {gather*} \frac {60\,{\mathrm {e}}^{-2\,{\mathrm {e}}^{-{\mathrm {e}}^{2/x}}\,\left ({\mathrm {e}}^{2\,x}-2\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.85, size = 19, normalized size = 0.66 \begin {gather*} \frac {60 e^{\left (4 - 2 e^{2 x}\right ) e^{- e^{\frac {2}{x}}}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________