Optimal. Leaf size=28 \[ e^{-4+\frac {5}{3} x^2 \left (3-16 \left (e^{x/3}+x\right )^2\right )} x \]
________________________________________________________________________________________
Rubi [B] time = 0.91, antiderivative size = 147, normalized size of antiderivative = 5.25, number of steps used = 2, number of rules used = 2, integrand size = 96, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.021, Rules used = {12, 2288} \begin {gather*} \frac {\left (-96 x^4+9 x^2-16 e^{x/3} \left (x^4+9 x^3\right )-16 e^{2 x/3} \left (x^3+3 x^2\right )\right ) \exp \left (\frac {1}{3} \left (-80 x^4-160 e^{x/3} x^3-80 e^{2 x/3} x^2+15 x^2-12\right )\right )}{-16 e^{x/3} x^3-96 x^3-144 e^{x/3} x^2-16 e^{2 x/3} x^2-48 e^{2 x/3} x+9 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{9} \int \exp \left (\frac {1}{3} \left (-12+15 x^2-80 e^{2 x/3} x^2-160 e^{x/3} x^3-80 x^4\right )\right ) \left (9+90 x^2-960 x^4+e^{2 x/3} \left (-480 x^2-160 x^3\right )+e^{x/3} \left (-1440 x^3-160 x^4\right )\right ) \, dx\\ &=\frac {\exp \left (\frac {1}{3} \left (-12+15 x^2-80 e^{2 x/3} x^2-160 e^{x/3} x^3-80 x^4\right )\right ) \left (9 x^2-96 x^4-16 e^{2 x/3} \left (3 x^2+x^3\right )-16 e^{x/3} \left (9 x^3+x^4\right )\right )}{9 x-48 e^{2 x/3} x-144 e^{x/3} x^2-16 e^{2 x/3} x^2-96 x^3-16 e^{x/3} x^3}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 42, normalized size = 1.50 \begin {gather*} e^{\frac {1}{3} \left (-12+\left (15-80 e^{2 x/3}\right ) x^2-160 e^{x/3} x^3-80 x^4\right )} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.86, size = 33, normalized size = 1.18 \begin {gather*} x e^{\left (-\frac {80}{3} \, x^{4} - \frac {160}{3} \, x^{3} e^{\left (\frac {1}{3} \, x\right )} - \frac {80}{3} \, x^{2} e^{\left (\frac {2}{3} \, x\right )} + 5 \, x^{2} - 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {1}{9} \, {\left (960 \, x^{4} - 90 \, x^{2} + 160 \, {\left (x^{3} + 3 \, x^{2}\right )} e^{\left (\frac {2}{3} \, x\right )} + 160 \, {\left (x^{4} + 9 \, x^{3}\right )} e^{\left (\frac {1}{3} \, x\right )} - 9\right )} e^{\left (-\frac {80}{3} \, x^{4} - \frac {160}{3} \, x^{3} e^{\left (\frac {1}{3} \, x\right )} - \frac {80}{3} \, x^{2} e^{\left (\frac {2}{3} \, x\right )} + 5 \, x^{2} - 4\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 34, normalized size = 1.21
method | result | size |
risch | \(x \,{\mathrm e}^{-\frac {80 x^{2} {\mathrm e}^{\frac {2 x}{3}}}{3}-\frac {160 x^{3} {\mathrm e}^{\frac {x}{3}}}{3}-\frac {80 x^{4}}{3}+5 x^{2}-4}\) | \(34\) |
norman | \(x \,{\mathrm e}^{-\frac {80 x^{2} {\mathrm e}^{\frac {2 x}{3}}}{3}-\frac {160 x^{3} {\mathrm e}^{\frac {x}{3}}}{3}-\frac {80 x^{4}}{3}+5 x^{2}-4}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.70, size = 33, normalized size = 1.18 \begin {gather*} x e^{\left (-\frac {80}{3} \, x^{4} - \frac {160}{3} \, x^{3} e^{\left (\frac {1}{3} \, x\right )} - \frac {80}{3} \, x^{2} e^{\left (\frac {2}{3} \, x\right )} + 5 \, x^{2} - 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.28, size = 36, normalized size = 1.29 \begin {gather*} x\,{\mathrm {e}}^{-4}\,{\mathrm {e}}^{5\,x^2}\,{\mathrm {e}}^{-\frac {80\,x^4}{3}}\,{\mathrm {e}}^{-\frac {80\,x^2\,{\mathrm {e}}^{\frac {2\,x}{3}}}{3}}\,{\mathrm {e}}^{-\frac {160\,x^3\,{\mathrm {e}}^{x/3}}{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 41, normalized size = 1.46 \begin {gather*} x e^{- \frac {80 x^{4}}{3} - \frac {160 x^{3} e^{\frac {x}{3}}}{3} - \frac {80 x^{2} e^{\frac {2 x}{3}}}{3} + 5 x^{2} - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________