Optimal. Leaf size=28 \[ \frac {3}{x}+2 x+\left (4+\sqrt [5]{e}+x+\log (\log (-5-x+\log (x)))\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 1.70, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {8 x-6 x^2-2 x^3+\sqrt [5]{e} \left (2 x-2 x^2\right )+\left (15+3 x-50 x^2-20 x^3-2 x^4+\sqrt [5]{e} \left (-10 x^2-2 x^3\right )+\left (-3+10 x^2+2 \sqrt [5]{e} x^2+2 x^3\right ) \log (x)\right ) \log (-5-x+\log (x))+\left (2 x-2 x^2+\left (-10 x^2-2 x^3+2 x^2 \log (x)\right ) \log (-5-x+\log (x))\right ) \log (\log (-5-x+\log (x)))}{\left (-5 x^2-x^3+x^2 \log (x)\right ) \log (-5-x+\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (2 \left (5+\sqrt [5]{e}\right )-\frac {3}{x^2}+2 x+2 \log (\log (-5-x+\log (x)))+\frac {2 (-1+x) \left (4 \left (1+\frac {\sqrt [5]{e}}{4}\right )+x+\log (\log (-5-x+\log (x)))\right )}{x (5+x-\log (x)) \log (-5-x+\log (x))}\right ) \, dx\\ &=\frac {3}{x}+2 \left (5+\sqrt [5]{e}\right ) x+x^2+2 \int \log (\log (-5-x+\log (x))) \, dx+2 \int \frac {(-1+x) \left (4 \left (1+\frac {\sqrt [5]{e}}{4}\right )+x+\log (\log (-5-x+\log (x)))\right )}{x (5+x-\log (x)) \log (-5-x+\log (x))} \, dx\\ &=\frac {3}{x}+2 \left (5+\sqrt [5]{e}\right ) x+x^2+2 \int \log (\log (-5-x+\log (x))) \, dx+2 \int \left (\frac {(-1+x) \left (4+\sqrt [5]{e}+x\right )}{x (5+x-\log (x)) \log (-5-x+\log (x))}+\frac {(-1+x) \log (\log (-5-x+\log (x)))}{x (5+x-\log (x)) \log (-5-x+\log (x))}\right ) \, dx\\ &=\frac {3}{x}+2 \left (5+\sqrt [5]{e}\right ) x+x^2+2 \int \frac {(-1+x) \left (4+\sqrt [5]{e}+x\right )}{x (5+x-\log (x)) \log (-5-x+\log (x))} \, dx+2 \int \log (\log (-5-x+\log (x))) \, dx+2 \int \frac {(-1+x) \log (\log (-5-x+\log (x)))}{x (5+x-\log (x)) \log (-5-x+\log (x))} \, dx\\ &=\frac {3}{x}+2 \left (5+\sqrt [5]{e}\right ) x+x^2+\log ^2(\log (-5-x+\log (x)))+2 \int \left (\frac {3 \left (1+\frac {\sqrt [5]{e}}{3}\right )}{(5+x-\log (x)) \log (-5-x+\log (x))}+\frac {-4-\sqrt [5]{e}}{x (5+x-\log (x)) \log (-5-x+\log (x))}+\frac {x}{(5+x-\log (x)) \log (-5-x+\log (x))}\right ) \, dx+2 \int \log (\log (-5-x+\log (x))) \, dx\\ &=\frac {3}{x}+2 \left (5+\sqrt [5]{e}\right ) x+x^2+\log ^2(\log (-5-x+\log (x)))+2 \int \frac {x}{(5+x-\log (x)) \log (-5-x+\log (x))} \, dx+2 \int \log (\log (-5-x+\log (x))) \, dx+\left (2 \left (3+\sqrt [5]{e}\right )\right ) \int \frac {1}{(5+x-\log (x)) \log (-5-x+\log (x))} \, dx-\left (2 \left (4+\sqrt [5]{e}\right )\right ) \int \frac {1}{x (5+x-\log (x)) \log (-5-x+\log (x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 49, normalized size = 1.75 \begin {gather*} \frac {3}{x}+2 \left (5+\sqrt [5]{e}\right ) x+x^2+2 \left (4+\sqrt [5]{e}+x\right ) \log (\log (-5-x+\log (x)))+\log ^2(\log (-5-x+\log (x))) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.60, size = 56, normalized size = 2.00 \begin {gather*} \frac {x^{3} + 2 \, x^{2} e^{\frac {1}{5}} + x \log \left (\log \left (-x + \log \relax (x) - 5\right )\right )^{2} + 10 \, x^{2} + 2 \, {\left (x^{2} + x e^{\frac {1}{5}} + 4 \, x\right )} \log \left (\log \left (-x + \log \relax (x) - 5\right )\right ) + 3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.35, size = 74, normalized size = 2.64 \begin {gather*} \frac {x^{3} + 2 \, x^{2} e^{\frac {1}{5}} + 2 \, x^{2} \log \left (\log \left (-x + \log \relax (x) - 5\right )\right ) + 2 \, x e^{\frac {1}{5}} \log \left (\log \left (-x + \log \relax (x) - 5\right )\right ) + x \log \left (\log \left (-x + \log \relax (x) - 5\right )\right )^{2} + 10 \, x^{2} + 8 \, x \log \left (\log \left (-x + \log \relax (x) - 5\right )\right ) + 3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.07, size = 72, normalized size = 2.57
method | result | size |
risch | \(\ln \left (\ln \left (\ln \relax (x )-5-x \right )\right )^{2}+2 \ln \left (\ln \left (\ln \relax (x )-5-x \right )\right ) x +\frac {2 \ln \left (\ln \left (\ln \relax (x )-5-x \right )\right ) x \,{\mathrm e}^{\frac {1}{5}}+2 x^{2} {\mathrm e}^{\frac {1}{5}}+x^{3}+8 \ln \left (\ln \left (\ln \relax (x )-5-x \right )\right ) x +10 x^{2}+3}{x}\) | \(72\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.81, size = 52, normalized size = 1.86 \begin {gather*} \frac {x^{3} + 2 \, x^{2} {\left (e^{\frac {1}{5}} + 5\right )} + x \log \left (\log \left (-x + \log \relax (x) - 5\right )\right )^{2} + 2 \, {\left (x^{2} + x {\left (e^{\frac {1}{5}} + 4\right )}\right )} \log \left (\log \left (-x + \log \relax (x) - 5\right )\right ) + 3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.67, size = 56, normalized size = 2.00 \begin {gather*} {\ln \left (\ln \left (\ln \relax (x)-x-5\right )\right )}^2+\ln \left (\ln \left (\ln \relax (x)-x-5\right )\right )\,\left (2\,{\mathrm {e}}^{1/5}+8\right )+2\,x\,\ln \left (\ln \left (\ln \relax (x)-x-5\right )\right )+\frac {3}{x}+x^2+x\,\left (2\,{\mathrm {e}}^{1/5}+10\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.40, size = 60, normalized size = 2.14 \begin {gather*} x^{2} + 2 x \log {\left (\log {\left (- x + \log {\relax (x )} - 5 \right )} \right )} + x \left (2 e^{\frac {1}{5}} + 10\right ) + \log {\left (\log {\left (- x + \log {\relax (x )} - 5 \right )} \right )}^{2} + 2 \left (e^{\frac {1}{5}} + 4\right ) \log {\left (\log {\left (- x + \log {\relax (x )} - 5 \right )} \right )} + \frac {3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________