Optimal. Leaf size=21 \[ \frac {x^2}{4 \left (-6-\frac {e^x x}{5}+\log (x)\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 1.65, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-875 x+25 e^x x^3+125 x \log (x)}{-54000-5400 e^x x-180 e^{2 x} x^2-2 e^{3 x} x^3+\left (27000+1800 e^x x+30 e^{2 x} x^2\right ) \log (x)+\left (-4500-150 e^x x\right ) \log ^2(x)+250 \log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {25 x \left (35-e^x x^2-5 \log (x)\right )}{2 \left (30+e^x x-5 \log (x)\right )^3} \, dx\\ &=\frac {25}{2} \int \frac {x \left (35-e^x x^2-5 \log (x)\right )}{\left (30+e^x x-5 \log (x)\right )^3} \, dx\\ &=\frac {25}{2} \int \left (-\frac {x^2}{\left (30+e^x x-5 \log (x)\right )^2}-\frac {5 x (-7-6 x+\log (x)+x \log (x))}{\left (30+e^x x-5 \log (x)\right )^3}\right ) \, dx\\ &=-\left (\frac {25}{2} \int \frac {x^2}{\left (30+e^x x-5 \log (x)\right )^2} \, dx\right )-\frac {125}{2} \int \frac {x (-7-6 x+\log (x)+x \log (x))}{\left (30+e^x x-5 \log (x)\right )^3} \, dx\\ &=-\left (\frac {25}{2} \int \frac {x^2}{\left (30+e^x x-5 \log (x)\right )^2} \, dx\right )-\frac {125}{2} \int \left (-\frac {7 x}{\left (30+e^x x-5 \log (x)\right )^3}-\frac {6 x^2}{\left (30+e^x x-5 \log (x)\right )^3}+\frac {x \log (x)}{\left (30+e^x x-5 \log (x)\right )^3}+\frac {x^2 \log (x)}{\left (30+e^x x-5 \log (x)\right )^3}\right ) \, dx\\ &=-\left (\frac {25}{2} \int \frac {x^2}{\left (30+e^x x-5 \log (x)\right )^2} \, dx\right )-\frac {125}{2} \int \frac {x \log (x)}{\left (30+e^x x-5 \log (x)\right )^3} \, dx-\frac {125}{2} \int \frac {x^2 \log (x)}{\left (30+e^x x-5 \log (x)\right )^3} \, dx+375 \int \frac {x^2}{\left (30+e^x x-5 \log (x)\right )^3} \, dx+\frac {875}{2} \int \frac {x}{\left (30+e^x x-5 \log (x)\right )^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.26, size = 21, normalized size = 1.00 \begin {gather*} \frac {25 x^2}{4 \left (-30-e^x x+5 \log (x)\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.87, size = 38, normalized size = 1.81 \begin {gather*} \frac {25 \, x^{2}}{4 \, {\left (x^{2} e^{\left (2 \, x\right )} + 60 \, x e^{x} - 10 \, {\left (x e^{x} + 30\right )} \log \relax (x) + 25 \, \log \relax (x)^{2} + 900\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.43, size = 39, normalized size = 1.86 \begin {gather*} \frac {25 \, x^{2}}{4 \, {\left (x^{2} e^{\left (2 \, x\right )} - 10 \, x e^{x} \log \relax (x) + 60 \, x e^{x} + 25 \, \log \relax (x)^{2} - 300 \, \log \relax (x) + 900\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 18, normalized size = 0.86
method | result | size |
risch | \(\frac {25 x^{2}}{4 \left ({\mathrm e}^{x} x -5 \ln \relax (x )+30\right )^{2}}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.58, size = 39, normalized size = 1.86 \begin {gather*} \frac {25 \, x^{2}}{4 \, {\left (x^{2} e^{\left (2 \, x\right )} - 10 \, {\left (x \log \relax (x) - 6 \, x\right )} e^{x} + 25 \, \log \relax (x)^{2} - 300 \, \log \relax (x) + 900\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \int -\frac {25\,x^3\,{\mathrm {e}}^x-875\,x+125\,x\,\ln \relax (x)}{180\,x^2\,{\mathrm {e}}^{2\,x}-250\,{\ln \relax (x)}^3+2\,x^3\,{\mathrm {e}}^{3\,x}+5400\,x\,{\mathrm {e}}^x+{\ln \relax (x)}^2\,\left (150\,x\,{\mathrm {e}}^x+4500\right )-\ln \relax (x)\,\left (30\,x^2\,{\mathrm {e}}^{2\,x}+1800\,x\,{\mathrm {e}}^x+27000\right )+54000} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.37, size = 41, normalized size = 1.95 \begin {gather*} \frac {25 x^{2}}{4 x^{2} e^{2 x} + \left (- 40 x \log {\relax (x )} + 240 x\right ) e^{x} + 100 \log {\relax (x )}^{2} - 1200 \log {\relax (x )} + 3600} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________