Optimal. Leaf size=19 \[ 4+64 e^{-4 x}-\frac {1}{(2-x)^2}+x \]
________________________________________________________________________________________
Rubi [A] time = 0.35, antiderivative size = 18, normalized size of antiderivative = 0.95, number of steps used = 5, number of rules used = 3, integrand size = 55, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.055, Rules used = {6688, 2194, 1850} \begin {gather*} x+64 e^{-4 x}-\frac {1}{(2-x)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1850
Rule 2194
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-256 e^{-4 x}+\frac {-6+12 x-6 x^2+x^3}{(-2+x)^3}\right ) \, dx\\ &=-\left (256 \int e^{-4 x} \, dx\right )+\int \frac {-6+12 x-6 x^2+x^3}{(-2+x)^3} \, dx\\ &=64 e^{-4 x}+\int \left (1+\frac {2}{(-2+x)^3}\right ) \, dx\\ &=64 e^{-4 x}-\frac {1}{(2-x)^2}+x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 16, normalized size = 0.84 \begin {gather*} 64 e^{-4 x}-\frac {1}{(-2+x)^2}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.74, size = 43, normalized size = 2.26 \begin {gather*} \frac {{\left (64 \, x^{2} + {\left (x^{3} - 4 \, x^{2} + 4 \, x - 1\right )} e^{\left (4 \, x\right )} - 256 \, x + 256\right )} e^{\left (-4 \, x\right )}}{x^{2} - 4 \, x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.20, size = 46, normalized size = 2.42 \begin {gather*} \frac {x^{3} + 64 \, x^{2} e^{\left (-4 \, x\right )} - 4 \, x^{2} - 256 \, x e^{\left (-4 \, x\right )} + 4 \, x + 256 \, e^{\left (-4 \, x\right )} - 1}{x^{2} - 4 \, x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 21, normalized size = 1.11
method | result | size |
risch | \(x -\frac {1}{x^{2}-4 x +4}+64 \,{\mathrm e}^{-4 x}\) | \(21\) |
norman | \(\frac {\left (256+x^{3} {\mathrm e}^{4 x}+15 \,{\mathrm e}^{4 x}-12 x \,{\mathrm e}^{4 x}-256 x +64 x^{2}\right ) {\mathrm e}^{-4 x}}{\left (x -2\right )^{2}}\) | \(42\) |
default | \(x -\frac {1}{\left (x -2\right )^{2}}+\frac {1024 \,{\mathrm e}^{-4 x} \left (4 x -9\right )}{x^{2}-4 x +4}-\frac {3072 \,{\mathrm e}^{-4 x} \left (3 x -7\right )}{x^{2}-4 x +4}+\frac {3072 \,{\mathrm e}^{-4 x} \left (2 x -5\right )}{x^{2}-4 x +4}+64 \,{\mathrm e}^{-4 x}-\frac {1024 \,{\mathrm e}^{-4 x} \left (x -3\right )}{x^{2}-4 x +4}\) | \(98\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {x^{4} - 6 \, x^{3} + 12 \, x^{2} + 64 \, {\left (x^{3} - 6 \, x^{2} + 12 \, x\right )} e^{\left (-4 \, x\right )} - 9 \, x + 2}{x^{3} - 6 \, x^{2} + 12 \, x - 8} - \frac {2048 \, e^{\left (-8\right )} E_{3}\left (4 \, x - 8\right )}{{\left (x - 2\right )}^{2}} + 1536 \, \int \frac {e^{\left (-4 \, x\right )}}{x^{4} - 8 \, x^{3} + 24 \, x^{2} - 32 \, x + 16}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.12, size = 20, normalized size = 1.05 \begin {gather*} x+64\,{\mathrm {e}}^{-4\,x}-\frac {1}{x^2-4\,x+4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 17, normalized size = 0.89 \begin {gather*} x + 64 e^{- 4 x} - \frac {1}{x^{2} - 4 x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________