Optimal. Leaf size=26 \[ e^{-e-2 x+x^2+2 x \log ^2\left (-1+\frac {x}{\log (x)}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 3.54, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-e-2 x+x^2+2 x \log ^2\left (\frac {x-\log (x)}{\log (x)}\right )} \left (\left (2 x-2 x^2\right ) \log (x)+(-2+2 x) \log ^2(x)+(4 x-4 x \log (x)) \log \left (\frac {x-\log (x)}{\log (x)}\right )+\left (-2 x \log (x)+2 \log ^2(x)\right ) \log ^2\left (\frac {x-\log (x)}{\log (x)}\right )\right )}{-x \log (x)+\log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-e-2 x+x^2+2 x \log ^2\left (\frac {x-\log (x)}{\log (x)}\right )} \left (-\left (\left (2 x-2 x^2\right ) \log (x)\right )-(-2+2 x) \log ^2(x)-(4 x-4 x \log (x)) \log \left (\frac {x-\log (x)}{\log (x)}\right )-\left (-2 x \log (x)+2 \log ^2(x)\right ) \log ^2\left (\frac {x-\log (x)}{\log (x)}\right )\right )}{(x-\log (x)) \log (x)} \, dx\\ &=\int \left (2 e^{-e-2 x+x^2+2 x \log ^2\left (\frac {x-\log (x)}{\log (x)}\right )} (-1+x)+\frac {4 e^{-e-2 x+x^2+2 x \log ^2\left (\frac {x-\log (x)}{\log (x)}\right )} x (-1+\log (x)) \log \left (-1+\frac {x}{\log (x)}\right )}{(x-\log (x)) \log (x)}+2 e^{-e-2 x+x^2+2 x \log ^2\left (\frac {x-\log (x)}{\log (x)}\right )} \log ^2\left (-1+\frac {x}{\log (x)}\right )\right ) \, dx\\ &=2 \int e^{-e-2 x+x^2+2 x \log ^2\left (\frac {x-\log (x)}{\log (x)}\right )} (-1+x) \, dx+2 \int e^{-e-2 x+x^2+2 x \log ^2\left (\frac {x-\log (x)}{\log (x)}\right )} \log ^2\left (-1+\frac {x}{\log (x)}\right ) \, dx+4 \int \frac {e^{-e-2 x+x^2+2 x \log ^2\left (\frac {x-\log (x)}{\log (x)}\right )} x (-1+\log (x)) \log \left (-1+\frac {x}{\log (x)}\right )}{(x-\log (x)) \log (x)} \, dx\\ &=2 \int \left (-e^{-e-2 x+x^2+2 x \log ^2\left (\frac {x-\log (x)}{\log (x)}\right )}+e^{-e-2 x+x^2+2 x \log ^2\left (\frac {x-\log (x)}{\log (x)}\right )} x\right ) \, dx+2 \int e^{-e-2 x+x^2+2 x \log ^2\left (\frac {x-\log (x)}{\log (x)}\right )} \log ^2\left (-1+\frac {x}{\log (x)}\right ) \, dx+4 \int \left (\frac {e^{-e-2 x+x^2+2 x \log ^2\left (\frac {x-\log (x)}{\log (x)}\right )} x \log \left (-1+\frac {x}{\log (x)}\right )}{x-\log (x)}-\frac {e^{-e-2 x+x^2+2 x \log ^2\left (\frac {x-\log (x)}{\log (x)}\right )} x \log \left (-1+\frac {x}{\log (x)}\right )}{(x-\log (x)) \log (x)}\right ) \, dx\\ &=-\left (2 \int e^{-e-2 x+x^2+2 x \log ^2\left (\frac {x-\log (x)}{\log (x)}\right )} \, dx\right )+2 \int e^{-e-2 x+x^2+2 x \log ^2\left (\frac {x-\log (x)}{\log (x)}\right )} x \, dx+2 \int e^{-e-2 x+x^2+2 x \log ^2\left (\frac {x-\log (x)}{\log (x)}\right )} \log ^2\left (-1+\frac {x}{\log (x)}\right ) \, dx+4 \int \frac {e^{-e-2 x+x^2+2 x \log ^2\left (\frac {x-\log (x)}{\log (x)}\right )} x \log \left (-1+\frac {x}{\log (x)}\right )}{x-\log (x)} \, dx-4 \int \frac {e^{-e-2 x+x^2+2 x \log ^2\left (\frac {x-\log (x)}{\log (x)}\right )} x \log \left (-1+\frac {x}{\log (x)}\right )}{(x-\log (x)) \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 26, normalized size = 1.00 \begin {gather*} e^{-e-2 x+x^2+2 x \log ^2\left (-1+\frac {x}{\log (x)}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 29, normalized size = 1.12 \begin {gather*} e^{\left (2 \, x \log \left (\frac {x - \log \relax (x)}{\log \relax (x)}\right )^{2} + x^{2} - 2 \, x - e\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 8.67, size = 26, normalized size = 1.00 \begin {gather*} e^{\left (2 \, x \log \left (\frac {x}{\log \relax (x)} - 1\right )^{2} + x^{2} - 2 \, x - e\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.15, size = 571, normalized size = 21.96
method | result | size |
risch | \(\ln \relax (x )^{2 i x \pi \,\mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \right )}{\ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right ) \mathrm {csgn}\left (i \left (\ln \relax (x )-x \right )\right )} \left (x -\ln \relax (x )\right )^{2 i x \pi \,\mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \right )}{\ln \relax (x )}\right )} \ln \relax (x )^{-4 x \ln \left (x -\ln \relax (x )\right )} \left (x -\ln \relax (x )\right )^{2 i x \pi \,\mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )} \ln \relax (x )^{2 i x \pi \,\mathrm {csgn}\left (i \left (\ln \relax (x )-x \right )\right )} \ln \relax (x )^{-2 i x \pi \,\mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )} \left (x -\ln \relax (x )\right )^{-2 i x \pi \,\mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \right )}{\ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right ) \mathrm {csgn}\left (i \left (\ln \relax (x )-x \right )\right )} \left (x -\ln \relax (x )\right )^{-2 i x \pi \,\mathrm {csgn}\left (i \left (\ln \relax (x )-x \right )\right )} \ln \relax (x )^{-2 i x \pi \,\mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \right )}{\ln \relax (x )}\right )} {\mathrm e}^{-x \,\pi ^{2} \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \right )}{\ln \relax (x )}\right )^{5} \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )+x \,\pi ^{2} \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \right )}{\ln \relax (x )}\right )^{5} \mathrm {csgn}\left (i \left (\ln \relax (x )-x \right )\right )-\frac {x \,\pi ^{2} \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \right )}{\ln \relax (x )}\right )^{4} \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )^{2}}{2}-\frac {x \,\pi ^{2} \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \right )}{\ln \relax (x )}\right )^{4} \mathrm {csgn}\left (i \left (\ln \relax (x )-x \right )\right )^{2}}{2}+2 x \ln \left (\ln \relax (x )\right )^{2}+2 x \ln \left (x -\ln \relax (x )\right )^{2}-\frac {x \,\pi ^{2} \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \right )}{\ln \relax (x )}\right )^{6}}{2}+2 x \,\pi ^{2} \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \right )}{\ln \relax (x )}\right )^{4} \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right ) \mathrm {csgn}\left (i \left (\ln \relax (x )-x \right )\right )+x \,\pi ^{2} \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \right )}{\ln \relax (x )}\right )^{3} \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )^{2} \mathrm {csgn}\left (i \left (\ln \relax (x )-x \right )\right )-x \,\pi ^{2} \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \right )}{\ln \relax (x )}\right )^{3} \mathrm {csgn}\left (i \left (\ln \relax (x )-x \right )\right )^{2} \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )-\frac {x \,\pi ^{2} \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \right )}{\ln \relax (x )}\right )^{2} \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )^{2} \mathrm {csgn}\left (i \left (\ln \relax (x )-x \right )\right )^{2}}{2}-{\mathrm e}+x^{2}-2 x}\) | \(571\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.72, size = 45, normalized size = 1.73 \begin {gather*} e^{\left (2 \, x \log \left (x - \log \relax (x)\right )^{2} - 4 \, x \log \left (x - \log \relax (x)\right ) \log \left (\log \relax (x)\right ) + 2 \, x \log \left (\log \relax (x)\right )^{2} + x^{2} - 2 \, x - e\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.45, size = 32, normalized size = 1.23 \begin {gather*} {\mathrm {e}}^{-\mathrm {e}}\,{\mathrm {e}}^{-2\,x}\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{2\,x\,{\ln \left (\frac {x-\ln \relax (x)}{\ln \relax (x)}\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.48, size = 26, normalized size = 1.00 \begin {gather*} e^{x^{2} + 2 x \log {\left (\frac {x - \log {\relax (x )}}{\log {\relax (x )}} \right )}^{2} - 2 x - e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________