Optimal. Leaf size=24 \[ \left (-e^{\frac {16}{x^2}}+x+4 \left (-\frac {21}{4 x^2}+x\right )\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.13, antiderivative size = 42, normalized size of antiderivative = 1.75, number of steps used = 6, number of rules used = 3, integrand size = 53, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {14, 2209, 2288} \begin {gather*} \frac {441}{x^4}+25 x^2+e^{\frac {32}{x^2}}+\frac {2 e^{\frac {16}{x^2}} \left (21-5 x^3\right )}{x^2}-\frac {210}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2209
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {64 e^{\frac {32}{x^2}}}{x^3}-\frac {2 e^{\frac {16}{x^2}} \left (672+42 x^2-160 x^3+5 x^5\right )}{x^5}+\frac {2 \left (-882+105 x^3+25 x^6\right )}{x^5}\right ) \, dx\\ &=-\left (2 \int \frac {e^{\frac {16}{x^2}} \left (672+42 x^2-160 x^3+5 x^5\right )}{x^5} \, dx\right )+2 \int \frac {-882+105 x^3+25 x^6}{x^5} \, dx-64 \int \frac {e^{\frac {32}{x^2}}}{x^3} \, dx\\ &=e^{\frac {32}{x^2}}+\frac {2 e^{\frac {16}{x^2}} \left (21-5 x^3\right )}{x^2}+2 \int \left (-\frac {882}{x^5}+\frac {105}{x^2}+25 x\right ) \, dx\\ &=e^{\frac {32}{x^2}}+\frac {441}{x^4}-\frac {210}{x}+25 x^2+\frac {2 e^{\frac {16}{x^2}} \left (21-5 x^3\right )}{x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 24, normalized size = 1.00 \begin {gather*} \frac {\left (21+e^{\frac {16}{x^2}} x^2-5 x^3\right )^2}{x^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.70, size = 45, normalized size = 1.88 \begin {gather*} \frac {25 \, x^{6} + x^{4} e^{\left (\frac {32}{x^{2}}\right )} - 210 \, x^{3} - 2 \, {\left (5 \, x^{5} - 21 \, x^{2}\right )} e^{\left (\frac {16}{x^{2}}\right )} + 441}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.31, size = 45, normalized size = 1.88 \begin {gather*} \frac {25 \, x^{6} - 10 \, x^{5} e^{\left (\frac {16}{x^{2}}\right )} - 210 \, x^{3} + 42 \, x^{2} e^{\left (\frac {16}{x^{2}}\right )} + 441}{x^{4}} + e^{\left (\frac {32}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.09, size = 42, normalized size = 1.75
method | result | size |
risch | \(25 x^{2}+\frac {-210 x^{3}+441}{x^{4}}+{\mathrm e}^{\frac {32}{x^{2}}}-\frac {2 \left (5 x^{3}-21\right ) {\mathrm e}^{\frac {16}{x^{2}}}}{x^{2}}\) | \(42\) |
derivativedivides | \(-\frac {210}{x}+25 x^{2}+\frac {441}{x^{4}}+{\mathrm e}^{\frac {32}{x^{2}}}+\frac {42 \,{\mathrm e}^{\frac {16}{x^{2}}}}{x^{2}}-10 \,{\mathrm e}^{\frac {16}{x^{2}}} x\) | \(43\) |
default | \(-\frac {210}{x}+25 x^{2}+\frac {441}{x^{4}}+{\mathrm e}^{\frac {32}{x^{2}}}+\frac {42 \,{\mathrm e}^{\frac {16}{x^{2}}}}{x^{2}}-10 \,{\mathrm e}^{\frac {16}{x^{2}}} x\) | \(43\) |
norman | \(\frac {441+x^{4} {\mathrm e}^{\frac {32}{x^{2}}}-210 x^{3}+25 x^{6}+42 \,{\mathrm e}^{\frac {16}{x^{2}}} x^{2}-10 \,{\mathrm e}^{\frac {16}{x^{2}}} x^{5}}{x^{4}}\) | \(51\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.40, size = 83, normalized size = 3.46 \begin {gather*} -20 \, x \sqrt {-\frac {1}{x^{2}}} \Gamma \left (-\frac {1}{2}, -\frac {16}{x^{2}}\right ) + 25 \, x^{2} - \frac {40 \, \sqrt {\pi } {\left (\operatorname {erf}\left (4 \, \sqrt {-\frac {1}{x^{2}}}\right ) - 1\right )}}{x \sqrt {-\frac {1}{x^{2}}}} - \frac {210}{x} + \frac {441}{x^{4}} + e^{\left (\frac {32}{x^{2}}\right )} + \frac {21}{8} \, e^{\left (\frac {16}{x^{2}}\right )} - \frac {21}{8} \, \Gamma \left (2, -\frac {16}{x^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.13, size = 23, normalized size = 0.96 \begin {gather*} \frac {{\left (x^2\,{\mathrm {e}}^{\frac {16}{x^2}}-5\,x^3+21\right )}^2}{x^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.15, size = 41, normalized size = 1.71 \begin {gather*} 25 x^{2} + \frac {x^{2} e^{\frac {32}{x^{2}}} + \left (42 - 10 x^{3}\right ) e^{\frac {16}{x^{2}}}}{x^{2}} + \frac {441 - 210 x^{3}}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________