Optimal. Leaf size=27 \[ 5-\log ^2\left (-2+x-\log \left (\log \left (\frac {e^{-x} \log (4 x)}{x^2}\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.97, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-2+(4+2 x) \log (4 x)+2 x \log (4 x) \log \left (\frac {e^{-x} \log (4 x)}{x^2}\right )\right ) \log \left (-2+x-\log \left (\log \left (\frac {e^{-x} \log (4 x)}{x^2}\right )\right )\right )}{\left (2 x-x^2\right ) \log (4 x) \log \left (\frac {e^{-x} \log (4 x)}{x^2}\right )+x \log (4 x) \log \left (\frac {e^{-x} \log (4 x)}{x^2}\right ) \log \left (\log \left (\frac {e^{-x} \log (4 x)}{x^2}\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (-2+(4+2 x) \log (4 x)+2 x \log (4 x) \log \left (\frac {e^{-x} \log (4 x)}{x^2}\right )\right ) \log \left (-2+x-\log \left (\log \left (\frac {e^{-x} \log (4 x)}{x^2}\right )\right )\right )}{x \log (4 x) \log \left (\frac {e^{-x} \log (4 x)}{x^2}\right ) \left (2-x+\log \left (\log \left (\frac {e^{-x} \log (4 x)}{x^2}\right )\right )\right )} \, dx\\ &=\int \left (-\frac {2 \log \left (-2+x-\log \left (\log \left (\frac {e^{-x} \log (4 x)}{x^2}\right )\right )\right )}{-2+x-\log \left (\log \left (\frac {e^{-x} \log (4 x)}{x^2}\right )\right )}-\frac {2 \log \left (-2+x-\log \left (\log \left (\frac {e^{-x} \log (4 x)}{x^2}\right )\right )\right )}{\log \left (\frac {e^{-x} \log (4 x)}{x^2}\right ) \left (-2+x-\log \left (\log \left (\frac {e^{-x} \log (4 x)}{x^2}\right )\right )\right )}-\frac {4 \log \left (-2+x-\log \left (\log \left (\frac {e^{-x} \log (4 x)}{x^2}\right )\right )\right )}{x \log \left (\frac {e^{-x} \log (4 x)}{x^2}\right ) \left (-2+x-\log \left (\log \left (\frac {e^{-x} \log (4 x)}{x^2}\right )\right )\right )}+\frac {2 \log \left (-2+x-\log \left (\log \left (\frac {e^{-x} \log (4 x)}{x^2}\right )\right )\right )}{x \log (4 x) \log \left (\frac {e^{-x} \log (4 x)}{x^2}\right ) \left (-2+x-\log \left (\log \left (\frac {e^{-x} \log (4 x)}{x^2}\right )\right )\right )}\right ) \, dx\\ &=-\left (2 \int \frac {\log \left (-2+x-\log \left (\log \left (\frac {e^{-x} \log (4 x)}{x^2}\right )\right )\right )}{-2+x-\log \left (\log \left (\frac {e^{-x} \log (4 x)}{x^2}\right )\right )} \, dx\right )-2 \int \frac {\log \left (-2+x-\log \left (\log \left (\frac {e^{-x} \log (4 x)}{x^2}\right )\right )\right )}{\log \left (\frac {e^{-x} \log (4 x)}{x^2}\right ) \left (-2+x-\log \left (\log \left (\frac {e^{-x} \log (4 x)}{x^2}\right )\right )\right )} \, dx+2 \int \frac {\log \left (-2+x-\log \left (\log \left (\frac {e^{-x} \log (4 x)}{x^2}\right )\right )\right )}{x \log (4 x) \log \left (\frac {e^{-x} \log (4 x)}{x^2}\right ) \left (-2+x-\log \left (\log \left (\frac {e^{-x} \log (4 x)}{x^2}\right )\right )\right )} \, dx-4 \int \frac {\log \left (-2+x-\log \left (\log \left (\frac {e^{-x} \log (4 x)}{x^2}\right )\right )\right )}{x \log \left (\frac {e^{-x} \log (4 x)}{x^2}\right ) \left (-2+x-\log \left (\log \left (\frac {e^{-x} \log (4 x)}{x^2}\right )\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 25, normalized size = 0.93 \begin {gather*} -\log ^2\left (-2+x-\log \left (\log \left (\frac {e^{-x} \log (4 x)}{x^2}\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.89, size = 24, normalized size = 0.89 \begin {gather*} -\log \left (x - \log \left (\log \left (\frac {e^{\left (-x\right )} \log \left (4 \, x\right )}{x^{2}}\right )\right ) - 2\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left (x \log \left (4 \, x\right ) \log \left (\frac {e^{\left (-x\right )} \log \left (4 \, x\right )}{x^{2}}\right ) + {\left (x + 2\right )} \log \left (4 \, x\right ) - 1\right )} \log \left (x - \log \left (\log \left (\frac {e^{\left (-x\right )} \log \left (4 \, x\right )}{x^{2}}\right )\right ) - 2\right )}{x \log \left (4 \, x\right ) \log \left (\frac {e^{\left (-x\right )} \log \left (4 \, x\right )}{x^{2}}\right ) \log \left (\log \left (\frac {e^{\left (-x\right )} \log \left (4 \, x\right )}{x^{2}}\right )\right ) - {\left (x^{2} - 2 \, x\right )} \log \left (4 \, x\right ) \log \left (\frac {e^{\left (-x\right )} \log \left (4 \, x\right )}{x^{2}}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.04, size = 0, normalized size = 0.00 \[\int \frac {\left (2 x \ln \left (4 x \right ) \ln \left (\frac {\ln \left (4 x \right ) {\mathrm e}^{-x}}{x^{2}}\right )+\left (2 x +4\right ) \ln \left (4 x \right )-2\right ) \ln \left (-\ln \left (\ln \left (\frac {\ln \left (4 x \right ) {\mathrm e}^{-x}}{x^{2}}\right )\right )+x -2\right )}{x \ln \left (4 x \right ) \ln \left (\frac {\ln \left (4 x \right ) {\mathrm e}^{-x}}{x^{2}}\right ) \ln \left (\ln \left (\frac {\ln \left (4 x \right ) {\mathrm e}^{-x}}{x^{2}}\right )\right )+\left (-x^{2}+2 x \right ) \ln \left (4 x \right ) \ln \left (\frac {\ln \left (4 x \right ) {\mathrm e}^{-x}}{x^{2}}\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.08, size = 71, normalized size = 2.63 \begin {gather*} -2 \, \log \left (x - \log \left (\log \left (\frac {e^{\left (-x\right )} \log \left (4 \, x\right )}{x^{2}}\right )\right ) - 2\right ) \log \left (-x + \log \left (-x - 2 \, \log \relax (x) + \log \left (2 \, \log \relax (2) + \log \relax (x)\right )\right ) + 2\right ) + \log \left (-x + \log \left (-x - 2 \, \log \relax (x) + \log \left (2 \, \log \relax (2) + \log \relax (x)\right )\right ) + 2\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.49, size = 24, normalized size = 0.89 \begin {gather*} -{\ln \left (x-\ln \left (\ln \left (\frac {\ln \left (4\,x\right )\,{\mathrm {e}}^{-x}}{x^2}\right )\right )-2\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________