Optimal. Leaf size=22 \[ -2-2 e^x+e^{\left (4+e^{e^3}\right ) (-5+x)+x} \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 27, normalized size of antiderivative = 1.23, number of steps used = 4, number of rules used = 2, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {2194, 2227} \begin {gather*} e^{\left (5+e^{e^3}\right ) x-5 \left (4+e^{e^3}\right )}-2 e^x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2194
Rule 2227
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\left (2 \int e^x \, dx\right )+\left (5+e^{e^3}\right ) \int e^{-20+e^{e^3} (-5+x)+5 x} \, dx\\ &=-2 e^x+\left (5+e^{e^3}\right ) \int e^{-5 \left (4+e^{e^3}\right )+\left (5+e^{e^3}\right ) x} \, dx\\ &=-2 e^x+e^{-5 \left (4+e^{e^3}\right )+\left (5+e^{e^3}\right ) x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 23, normalized size = 1.05 \begin {gather*} e^{e^{e^3} (-5+x)+5 (-4+x)}-2 e^x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.82, size = 18, normalized size = 0.82 \begin {gather*} e^{\left ({\left (x - 5\right )} e^{\left (e^{3}\right )} + 5 \, x - 20\right )} - 2 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 18, normalized size = 0.82 \begin {gather*} e^{\left ({\left (x - 5\right )} e^{\left (e^{3}\right )} + 5 \, x - 20\right )} - 2 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 19, normalized size = 0.86
method | result | size |
default | \({\mathrm e}^{\left (x -5\right ) {\mathrm e}^{{\mathrm e}^{3}}+5 x -20}-2 \,{\mathrm e}^{x}\) | \(19\) |
norman | \({\mathrm e}^{\left (x -5\right ) {\mathrm e}^{{\mathrm e}^{3}}+5 x -20}-2 \,{\mathrm e}^{x}\) | \(19\) |
risch | \({\mathrm e}^{x \,{\mathrm e}^{{\mathrm e}^{3}}-5 \,{\mathrm e}^{{\mathrm e}^{3}}+5 x -20}-2 \,{\mathrm e}^{x}\) | \(22\) |
meijerg | \(\frac {\left ({\mathrm e}^{{\mathrm e}^{3}-5 \,{\mathrm e}^{{\mathrm e}^{3}}-20}+5 \,{\mathrm e}^{-5 \,{\mathrm e}^{{\mathrm e}^{3}}-20}\right ) \left (1-{\mathrm e}^{-x \left (-{\mathrm e}^{{\mathrm e}^{3}}-5\right )}\right )}{-{\mathrm e}^{{\mathrm e}^{3}}-5}+2-2 \,{\mathrm e}^{x}\) | \(53\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 18, normalized size = 0.82 \begin {gather*} e^{\left ({\left (x - 5\right )} e^{\left (e^{3}\right )} + 5 \, x - 20\right )} - 2 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.11, size = 24, normalized size = 1.09 \begin {gather*} {\mathrm {e}}^{x\,{\mathrm {e}}^{{\mathrm {e}}^3}}\,{\mathrm {e}}^{5\,x}\,{\mathrm {e}}^{-20}\,{\mathrm {e}}^{-5\,{\mathrm {e}}^{{\mathrm {e}}^3}}-2\,{\mathrm {e}}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 19, normalized size = 0.86 \begin {gather*} - 2 e^{x} + e^{5 x + \left (x - 5\right ) e^{e^{3}} - 20} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________