Optimal. Leaf size=26 \[ \frac {\log (x)}{\log \left (\frac {5 e^5 \left (x+\log \left (e^{32 x^2}\right )\right )}{9 x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.48, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-32 x \log (x)+(1+32 x) \log \left (\frac {1}{9} e^5 (5+160 x)\right )}{\left (x+32 x^2\right ) \log ^2\left (\frac {1}{9} e^5 (5+160 x)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-32 x \log (x)+(1+32 x) \log \left (\frac {1}{9} e^5 (5+160 x)\right )}{x (1+32 x) \log ^2\left (\frac {1}{9} e^5 (5+160 x)\right )} \, dx\\ &=\int \frac {-32 x \log (x)+(1+32 x) \log \left (\frac {1}{9} e^5 (5+160 x)\right )}{x (1+32 x) \log ^2\left (\frac {5 e^5}{9}+\frac {160 e^5 x}{9}\right )} \, dx\\ &=\int \left (\frac {32 \left (32 x \log (x)-\log \left (\frac {5}{9} e^5 (1+32 x)\right )-32 x \log \left (\frac {5}{9} e^5 (1+32 x)\right )\right )}{(1+32 x) \log ^2\left (\frac {5 e^5}{9}+\frac {160 e^5 x}{9}\right )}+\frac {-32 x \log (x)+\log \left (\frac {5}{9} e^5 (1+32 x)\right )+32 x \log \left (\frac {5}{9} e^5 (1+32 x)\right )}{x \log ^2\left (\frac {5 e^5}{9}+\frac {160 e^5 x}{9}\right )}\right ) \, dx\\ &=32 \int \frac {32 x \log (x)-\log \left (\frac {5}{9} e^5 (1+32 x)\right )-32 x \log \left (\frac {5}{9} e^5 (1+32 x)\right )}{(1+32 x) \log ^2\left (\frac {5 e^5}{9}+\frac {160 e^5 x}{9}\right )} \, dx+\int \frac {-32 x \log (x)+\log \left (\frac {5}{9} e^5 (1+32 x)\right )+32 x \log \left (\frac {5}{9} e^5 (1+32 x)\right )}{x \log ^2\left (\frac {5 e^5}{9}+\frac {160 e^5 x}{9}\right )} \, dx\\ &=32 \int \frac {\frac {32 x \log (x)}{1+32 x}-\log \left (\frac {5}{9} e^5 (1+32 x)\right )}{\log ^2\left (\frac {5 e^5}{9}+\frac {160 e^5 x}{9}\right )} \, dx+\int \frac {-32 x \log (x)+(1+32 x) \log \left (\frac {5}{9} e^5 (1+32 x)\right )}{x \log ^2\left (\frac {5 e^5}{9}+\frac {160 e^5 x}{9}\right )} \, dx\\ &=32 \int \left (\frac {1}{-5-\log \left (\frac {5}{9} (1+32 x)\right )}+\frac {32 x \log (x)}{(1+32 x) \log ^2\left (\frac {5 e^5}{9}+\frac {160 e^5 x}{9}\right )}\right ) \, dx+\int \left (\frac {1}{x \left (5+\log \left (\frac {5}{9}+\frac {160 x}{9}\right )\right )}+\frac {32}{5+\log \left (\frac {5}{9} (1+32 x)\right )}-\frac {32 \log (x)}{\log ^2\left (\frac {5 e^5}{9}+\frac {160 e^5 x}{9}\right )}\right ) \, dx\\ &=32 \int \frac {1}{-5-\log \left (\frac {5}{9} (1+32 x)\right )} \, dx+32 \int \frac {1}{5+\log \left (\frac {5}{9} (1+32 x)\right )} \, dx-32 \int \frac {\log (x)}{\log ^2\left (\frac {5 e^5}{9}+\frac {160 e^5 x}{9}\right )} \, dx+1024 \int \frac {x \log (x)}{(1+32 x) \log ^2\left (\frac {5 e^5}{9}+\frac {160 e^5 x}{9}\right )} \, dx+\int \frac {1}{x \left (5+\log \left (\frac {5}{9}+\frac {160 x}{9}\right )\right )} \, dx\\ &=-\left (32 \int \frac {\log (x)}{\log ^2\left (\frac {5 e^5}{9}+\frac {160 e^5 x}{9}\right )} \, dx\right )+1024 \int \left (\frac {\log (x)}{32 \log ^2\left (\frac {5 e^5}{9}+\frac {160 e^5 x}{9}\right )}+\frac {\log (x)}{32 (-1-32 x) \log ^2\left (\frac {5 e^5}{9}+\frac {160 e^5 x}{9}\right )}\right ) \, dx+\int \frac {1}{x \left (5+\log \left (\frac {5}{9}+\frac {160 x}{9}\right )\right )} \, dx+\operatorname {Subst}\left (\int \frac {1}{-5-\log \left (\frac {5 x}{9}\right )} \, dx,x,1+32 x\right )+\operatorname {Subst}\left (\int \frac {1}{5+\log \left (\frac {5 x}{9}\right )} \, dx,x,1+32 x\right )\\ &=\frac {9}{5} \operatorname {Subst}\left (\int \frac {e^x}{-5-x} \, dx,x,\log \left (\frac {5}{9} (1+32 x)\right )\right )+\frac {9}{5} \operatorname {Subst}\left (\int \frac {e^x}{5+x} \, dx,x,\log \left (\frac {5}{9} (1+32 x)\right )\right )+32 \int \frac {\log (x)}{(-1-32 x) \log ^2\left (\frac {5 e^5}{9}+\frac {160 e^5 x}{9}\right )} \, dx+\int \frac {1}{x \left (5+\log \left (\frac {5}{9}+\frac {160 x}{9}\right )\right )} \, dx\\ &=\frac {9 \operatorname {Subst}\left (\int -\frac {5 e^5 \log \left (-\frac {1}{32}+\frac {9 x}{160 e^5}\right )}{9 x \log ^2(x)} \, dx,x,\frac {5 e^5}{9}+\frac {160 e^5 x}{9}\right )}{5 e^5}+\int \frac {1}{x \left (5+\log \left (\frac {5}{9}+\frac {160 x}{9}\right )\right )} \, dx\\ &=\int \frac {1}{x \left (5+\log \left (\frac {5}{9}+\frac {160 x}{9}\right )\right )} \, dx-\operatorname {Subst}\left (\int \frac {\log \left (-\frac {1}{32}+\frac {9 x}{160 e^5}\right )}{x \log ^2(x)} \, dx,x,\frac {5 e^5}{9}+\frac {160 e^5 x}{9}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.23, size = 17, normalized size = 0.65 \begin {gather*} \frac {\log (x)}{5+\log \left (\frac {5}{9} (1+32 x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 15, normalized size = 0.58 \begin {gather*} \frac {\log \relax (x)}{\log \left (\frac {5}{9} \, {\left (32 \, x + 1\right )} e^{5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 20, normalized size = 0.77 \begin {gather*} -\frac {\log \relax (x)}{2 \, \log \relax (3) - \log \left (160 \, x + 5\right ) - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.35, size = 16, normalized size = 0.62
method | result | size |
risch | \(\frac {\ln \relax (x )}{\ln \left (\frac {\left (160 x +5\right ) {\mathrm e}^{5}}{9}\right )}\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.91, size = 19, normalized size = 0.73 \begin {gather*} \frac {\log \relax (x)}{\log \relax (5) - 2 \, \log \relax (3) + \log \left (32 \, x + 1\right ) + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.57, size = 16, normalized size = 0.62 \begin {gather*} \frac {\ln \relax (x)}{\ln \left (\frac {5\,{\mathrm {e}}^5}{9}+\frac {160\,x\,{\mathrm {e}}^5}{9}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 15, normalized size = 0.58 \begin {gather*} \frac {\log {\relax (x )}}{\log {\left (\left (\frac {160 x}{9} + \frac {5}{9}\right ) e^{5} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________