Optimal. Leaf size=26 \[ \frac {1}{2} x \left (3+\frac {1}{3} \left (-4+e^x+\frac {7}{2 x}\right )+x\right ) \log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 32, normalized size of antiderivative = 1.23, number of steps used = 10, number of rules used = 4, integrand size = 48, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {12, 14, 2288, 2313} \begin {gather*} \frac {1}{6} \left (3 x^2+5 x\right ) \log (x)+\frac {1}{6} e^x x \log (x)+\frac {7 \log (x)}{12} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2288
Rule 2313
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{12} \int \frac {7+10 x+2 e^x x+6 x^2+\left (10 x+12 x^2+e^x \left (2 x+2 x^2\right )\right ) \log (x)}{x} \, dx\\ &=\frac {1}{12} \int \left (2 e^x (1+\log (x)+x \log (x))+\frac {7+10 x+6 x^2+10 x \log (x)+12 x^2 \log (x)}{x}\right ) \, dx\\ &=\frac {1}{12} \int \frac {7+10 x+6 x^2+10 x \log (x)+12 x^2 \log (x)}{x} \, dx+\frac {1}{6} \int e^x (1+\log (x)+x \log (x)) \, dx\\ &=\frac {1}{6} e^x x \log (x)+\frac {1}{12} \int \left (\frac {7+10 x+6 x^2}{x}+2 (5+6 x) \log (x)\right ) \, dx\\ &=\frac {1}{6} e^x x \log (x)+\frac {1}{12} \int \frac {7+10 x+6 x^2}{x} \, dx+\frac {1}{6} \int (5+6 x) \log (x) \, dx\\ &=\frac {1}{6} e^x x \log (x)+\frac {1}{6} \left (5 x+3 x^2\right ) \log (x)+\frac {1}{12} \int \left (10+\frac {7}{x}+6 x\right ) \, dx-\frac {1}{6} \int (5+3 x) \, dx\\ &=\frac {7 \log (x)}{12}+\frac {1}{6} e^x x \log (x)+\frac {1}{6} \left (5 x+3 x^2\right ) \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 21, normalized size = 0.81 \begin {gather*} \frac {1}{12} \left (7+2 \left (5+e^x\right ) x+6 x^2\right ) \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.02, size = 19, normalized size = 0.73 \begin {gather*} \frac {1}{12} \, {\left (6 \, x^{2} + 2 \, x e^{x} + 10 \, x + 7\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.61, size = 24, normalized size = 0.92 \begin {gather*} \frac {1}{2} \, x^{2} \log \relax (x) + \frac {1}{6} \, x e^{x} \log \relax (x) + \frac {5}{6} \, x \log \relax (x) + \frac {7}{12} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 24, normalized size = 0.92
method | result | size |
risch | \(\frac {\left (6 x^{2}+2 \,{\mathrm e}^{x} x +10 x \right ) \ln \relax (x )}{12}+\frac {7 \ln \relax (x )}{12}\) | \(24\) |
default | \(\frac {x \,{\mathrm e}^{x} \ln \relax (x )}{6}+\frac {x^{2} \ln \relax (x )}{2}+\frac {5 x \ln \relax (x )}{6}+\frac {7 \ln \relax (x )}{12}\) | \(25\) |
norman | \(\frac {x \,{\mathrm e}^{x} \ln \relax (x )}{6}+\frac {x^{2} \ln \relax (x )}{2}+\frac {5 x \ln \relax (x )}{6}+\frac {7 \ln \relax (x )}{12}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {1}{2} \, x^{2} \log \relax (x) + \frac {1}{6} \, {\left (x - 1\right )} e^{x} \log \relax (x) + \frac {5}{6} \, x \log \relax (x) + \frac {1}{6} \, e^{x} \log \relax (x) - \frac {1}{6} \, {\rm Ei}\relax (x) + \frac {1}{6} \, e^{x} - \frac {1}{6} \, \int \frac {{\left (x - 1\right )} e^{x}}{x}\,{d x} + \frac {7}{12} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.35, size = 19, normalized size = 0.73 \begin {gather*} \frac {\ln \relax (x)\,\left (10\,x+2\,x\,{\mathrm {e}}^x+6\,x^2+7\right )}{12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 29, normalized size = 1.12 \begin {gather*} \frac {x e^{x} \log {\relax (x )}}{6} + \left (\frac {x^{2}}{2} + \frac {5 x}{6}\right ) \log {\relax (x )} + \frac {7 \log {\relax (x )}}{12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________