Optimal. Leaf size=25 \[ \frac {-e^5-\frac {1}{7} e^{e^3} (-1+x)}{\log (-3+x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.53, antiderivative size = 44, normalized size of antiderivative = 1.76, number of steps used = 11, number of rules used = 8, integrand size = 44, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {6742, 2411, 2353, 2297, 2298, 2302, 30, 2389} \begin {gather*} \frac {e^{e^3} (3-x)}{7 \log (x-3)}-\frac {7 e^5+2 e^{e^3}}{7 \log (x-3)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 30
Rule 2297
Rule 2298
Rule 2302
Rule 2353
Rule 2389
Rule 2411
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {7 e^5-e^{e^3}+e^{e^3} x}{7 (-3+x) \log ^2(-3+x)}-\frac {e^{e^3}}{7 \log (-3+x)}\right ) \, dx\\ &=\frac {1}{7} \int \frac {7 e^5-e^{e^3}+e^{e^3} x}{(-3+x) \log ^2(-3+x)} \, dx-\frac {1}{7} e^{e^3} \int \frac {1}{\log (-3+x)} \, dx\\ &=\frac {1}{7} \operatorname {Subst}\left (\int \frac {7 e^5+2 e^{e^3}+e^{e^3} x}{x \log ^2(x)} \, dx,x,-3+x\right )-\frac {1}{7} e^{e^3} \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,-3+x\right )\\ &=-\frac {1}{7} e^{e^3} \text {li}(-3+x)+\frac {1}{7} \operatorname {Subst}\left (\int \left (\frac {e^{e^3}}{\log ^2(x)}+\frac {7 e^5+2 e^{e^3}}{x \log ^2(x)}\right ) \, dx,x,-3+x\right )\\ &=-\frac {1}{7} e^{e^3} \text {li}(-3+x)+\frac {1}{7} e^{e^3} \operatorname {Subst}\left (\int \frac {1}{\log ^2(x)} \, dx,x,-3+x\right )+\frac {1}{7} \left (7 e^5+2 e^{e^3}\right ) \operatorname {Subst}\left (\int \frac {1}{x \log ^2(x)} \, dx,x,-3+x\right )\\ &=\frac {e^{e^3} (3-x)}{7 \log (-3+x)}-\frac {1}{7} e^{e^3} \text {li}(-3+x)+\frac {1}{7} e^{e^3} \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,-3+x\right )+\frac {1}{7} \left (7 e^5+2 e^{e^3}\right ) \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log (-3+x)\right )\\ &=-\frac {7 e^5+2 e^{e^3}}{7 \log (-3+x)}+\frac {e^{e^3} (3-x)}{7 \log (-3+x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 25, normalized size = 1.00 \begin {gather*} -\frac {7 e^5+e^{e^3} (-1+x)}{7 \log (-3+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.92, size = 20, normalized size = 0.80 \begin {gather*} -\frac {{\left (x - 1\right )} e^{\left (e^{3}\right )} + 7 \, e^{5}}{7 \, \log \left (x - 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 23, normalized size = 0.92 \begin {gather*} -\frac {x e^{\left (e^{3}\right )} + 7 \, e^{5} - e^{\left (e^{3}\right )}}{7 \, \log \left (x - 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.33, size = 24, normalized size = 0.96
method | result | size |
norman | \(\frac {-\frac {x \,{\mathrm e}^{{\mathrm e}^{3}}}{7}+\frac {{\mathrm e}^{{\mathrm e}^{3}}}{7}-{\mathrm e}^{5}}{\ln \left (x -3\right )}\) | \(24\) |
risch | \(-\frac {7 \,{\mathrm e}^{5}+x \,{\mathrm e}^{{\mathrm e}^{3}}-{\mathrm e}^{{\mathrm e}^{3}}}{7 \ln \left (x -3\right )}\) | \(24\) |
derivativedivides | \(\frac {{\mathrm e}^{{\mathrm e}^{3}} \expIntegralEi \left (1, -\ln \left (x -3\right )\right )}{7}+\frac {{\mathrm e}^{{\mathrm e}^{3}} \left (-\frac {x -3}{\ln \left (x -3\right )}-\expIntegralEi \left (1, -\ln \left (x -3\right )\right )\right )}{7}-\frac {{\mathrm e}^{5}}{\ln \left (x -3\right )}-\frac {2 \,{\mathrm e}^{{\mathrm e}^{3}}}{7 \ln \left (x -3\right )}\) | \(63\) |
default | \(\frac {{\mathrm e}^{{\mathrm e}^{3}} \expIntegralEi \left (1, -\ln \left (x -3\right )\right )}{7}+\frac {{\mathrm e}^{{\mathrm e}^{3}} \left (-\frac {x -3}{\ln \left (x -3\right )}-\expIntegralEi \left (1, -\ln \left (x -3\right )\right )\right )}{7}-\frac {{\mathrm e}^{5}}{\ln \left (x -3\right )}-\frac {2 \,{\mathrm e}^{{\mathrm e}^{3}}}{7 \ln \left (x -3\right )}\) | \(63\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 39, normalized size = 1.56 \begin {gather*} -\frac {x e^{\left (e^{3}\right )}}{7 \, \log \left (x - 3\right )} - \frac {e^{5}}{\log \left (x - 3\right )} + \frac {e^{\left (e^{3}\right )}}{7 \, \log \left (x - 3\right )} - \frac {3}{7} \, e^{\left (e^{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.20, size = 23, normalized size = 0.92 \begin {gather*} -\frac {7\,{\mathrm {e}}^5-{\mathrm {e}}^{{\mathrm {e}}^3}+x\,{\mathrm {e}}^{{\mathrm {e}}^3}}{7\,\ln \left (x-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 22, normalized size = 0.88 \begin {gather*} \frac {- x e^{e^{3}} - 7 e^{5} + e^{e^{3}}}{7 \log {\left (x - 3 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________